25

Extending and Embedding
Classic Python

CPython runs on a portable, C-coded virtual machine. Python’s built-in objects—
such as numbers, sequences, dictionaries, sets, and files—are coded in C, as are
several modules in Python’s standard library. Modern platforms support dynami-
cally loaded libraries, with file extensions such as .dll on Windows, .so on Linux,
and .dylib on Mac: building Python produces such binary files. You can code
your own extension modules for Python in C (or any language that can produce
C-callable libraries), using the Python C API covered in this chapter. With this API,
you can produce and deploy dynamic libraries that Python scripts and interactive
sessions can later use with the import statement, covered in “The import Statement”
in Chapter 7.

Extending Python means building modules that Python code can import to access
the features the modules supply. Embedding Python means executing Python code
from an application coded in another language. For such execution to be useful,
Python code must in turn be able to access some of your application’s functional-
ity. In practice, therefore, embedding implies some extending, as well as a few
embedding-specific operations. The three main reasons for wishing to extend
Python can be summarized as follows:

« Reimplementing some functionality (originally coded in Python) in a lower-
level language, intending to improve performance

o Letting Python code access some existing functionality supplied by libraries
coded in (or, at any rate, callable from) lower-level languages

o Letting Python code access some existing functionality of an application that is
in the process of embedding Python as the application’s scripting language

Embedding and extending are covered in Python’s online documentation; there,
you can find an in-depth tutorial and an extensive reference manual. Many details
are best studied in Python’s extensively documented C sources. Download Python’s
source distribution and study the sources of Pythons core, C-coded extension
modules, and the example extensions supplied for this purpose.

This chapter covers the basics of extending and embedding Python with C. It also
mentions, but does not cover in depth, other ways to extend Python. Do notice that,
as the online docs put it, several excellent third-party modules (such as Cython,
covered in “Cython” on page 38, CFFI, mentioned in “Extending Python Without
Python’s C API” on page 36, and Numba, CLIF, pybind11, and SWIG, not covered
in this book) “offer both simpler and more sophisticated approaches to creating C
and C++ extensions for Python.”

This Chapter Assumes Some Knowledge of C

Although we include some non-C extension options at the
end of this chapter, to extend or embed Python using the C
API (or most of the above-mentioned third-party modules),
you must know the C and/or C++ programming languages.
We do not cover C and C++ in this book, but there are many
print and online resources that you can consult to learn them
(make sure not to confuse C with its subtly different close
relative C++: they are different, although similar, languages).
In most of the rest of this chapter, we assume that you have at
least some knowledge of C.

Extending Python with Python’s CAPI

A Python extension module named x resides in a dynamic library with the same
filename (x.pyd on Windows; x.so on most Unix-like platforms) in an appropriate
directory (often the site-packages subdirectory of the Python library directory).
You generally build the x extension module from a C source file x.c (or, more
conventionally, xmodule.c) whose overall structure is:

#define PY_SSIZE_T_CLEAN
#include <Python.h>/* omitted: the body of the x module */

PYMODINIT_FUNC
PyInit_x(void)
{

/* omitted: code that creates and initializes the x module */

}

When you have built the extension module and installed it somewhere in Python’s
path, the Python statement import x loads the dynamic library, then locates and
calls the module initialization function, which must do all that is needed to initialize
the module object named x.

2 | Chapter 25: Extending and Embedding Classic Python

https://docs.python.org/3/extending/index.html
https://docs.python.org/3/c-api/index.html
http://numba.pydata.org/
https://github.com/google/clif
https://pybind11.readthedocs.io/en/stable/index.html
http://www.swig.org/

Building and Installing C-Coded Python Extensions

To build and install a C-coded Python extension module, its simplest and most
productive to use the third-party module setuptools (a variant of the deprecated
standard library module distutils; just pip install setuptools to install setup
tools). In the same directory as x.c, place a file named setup.py that contains the
following statements:

from setuptools import setup, Extension
setup(name="'x', ext_modules=[Extension('x',sources=['x.c'])])

From a shell prompt in this directory, you can now run:
C:\the_dir> python setup.py install

to build and install the module, making it usable in your Python installation. (You'll
normally want to do this within a virtual environment, with venv, as covered in
“Python Environments” in Chapter 7, to avoid affecting the global state of your
Python installation; however, for simplicity, we omit that important step in this
chapter.)

As discussed in Chapter 24, setuptools performs compilation and linking, with the
right compiler and linker commands and flags, and copies the resulting dynamic
library into the right directory, based on your Python installation (depending
on that installation’s details, you may need to have administrator or superuser
privileges for this; for example, on macOS or Linux, you may run sudo python
setup.py install, although using venv instead is usually best). Your Python code
(running in the appropriate virtual environment, if needed) can then access the
resulting module with the statement import x.

What C compiler do you need?

To compile C-coded extensions to Python, you normally need the same C compiler
used to build the Python version you want to extend. For most Linux platforms,
this means the free gcc compiler that normally comes with your platform or can be
freely downloaded for it. (You might also consider clang, widely reputed to offer
better error messages.) For Mac users, gcc (actually a frontend to clang) comes
with Apple’s free XCode (aka “Developer Tools”) IDE, which you can download and
install from Apple’s App Store (you only need the “command line” subset of XCode).

For Windows, you ideally need the Microsoft product known as Visual Studio 14.x,
though other versions of Visual Studio might also work (see the Python wiki for
details).

Overview of C-Coded Python Extension Modules

Your C function PyInit_x generally has the following overall structure:

PYMODINIT_FUNC
PyInit_x(void)
{

Extending Python with Python's CAPI | 3

o
m

ig
g3
e
23
=]

a3
o

2]
I
73
o
0
o
<
=
=
o
=]

https://pypi.org/project/setuptools/
https://github.com/pynutshell/pynut4/blob/main/chapters/24%20Packaging%20Programs%20and%20Extensions.pdf
http://clang.llvm.org/
https://wiki.python.org/moin/WindowsCompilers

PyObject* m = PyModule_Create(&x_module);
// x_module is the instance of struct PyModuleDef describing the
// module and 1in particular connecting to its methods (functions)

// Then: calls to PyModule_AddObject(m, "somename", someobj)
// to add exceptions or other classes, and module constants.
// And at last, when all is done:

return m;

}
More details are provided in “The Initialization Module” on page 6. x_module is a
struct like:!

static struct PyModuleDef x_module = {
PyModuleDef_HEAD_INIT,

"x", /* the name of the module */
x_doc, /* the module's docstring, may be NULL */
-1, /* size of per-subinterpreter state of the module, or -1

if the module keeps state in global variables, and thus
the module does not support subinterpreters */
x_methods /* array of the module's method definitions */
IH
and within it, x_methods is an array of PyMethodDef structs. Each PyMethodDef
struct in the x_methods array describes a C function that your module x makes
available to Python code that imports x. Each such C function has the following
overall structure:

static PyObject* func_with_named_args(PyObject* self,
PyObject* args, PyObject* kwds)

{

/* omitted: body of function, accessing arguments via the Python C
API function PyArg_ParseTupleAndKeywords, returning a PyObject*
result, NULL for errors */

}

or a slightly simpler variant:

static PyObject* func_with_positional_args_only(PyObject* self,
PyObject* args)

{
/* omitted: body of function, accessing arguments via the Python C
API function PyArg_ParseTuple, returning a PyObject* result,
NULL for errors */
}

How C-coded functions access arguments passed by Python code is covered in
“Accessing Arguments” on page 9. How such functions build Python objects is

1 Other fields can be specified if the module uses the advanced multiphase initialization approach,
which we don’t cover in this book; with the single-phase initialization that we cover here, use no
other fields.

4 | Chapter25: Extending and Embedding Classic Python

covered in “Creating Python Values” on page 14, and how they raise or propagate
exceptions back to the Python code that called them is covered in Chapter 6. When
your module defines new Python types, aka classes, your C code defines one or
more instances of the struct PyTypeObject. This subject is covered in “Defining
New Types” on page 28.

A simple example using all these concepts is shown in “A Simple Extension Exam-
ple” on page 25. A toy “Hello World” example module could be as simple as:

#include <Python.h>
static PyObject*
hello(PyObject* self)
{

}

static char hello_docs[] =
"hello(): return a popular greeting phrase\n";

static PyMethodDef hello_funcs[] = {
{"helloworld", (PyCFunction)hello, METH_NOARGS, hello_docs},
{NULL}

return Py_Buildvalue('s", "Hello, Python extensions world!");

1
static struct PyModuleDef hello_module = {
PyModuleDef_HEAD_INIT,
"hello",
hello_docs,
-1,
hello_funcs

};

PyMODINIT_FUNC
PyInit_hello(void)

{
return PyModule_Create(&hello_module);

}

The C string passed to Py_Buildvalue is encoded in UTF-8, and the result is a
Python str instance. Save this as hello.c and build it through a setup.py script with
setuptools, as follows:

from setuptools import setup, Extension
setup(name="hello',
ext_modules=[Extension('hello',sources=["'hello.c'])])

After you have run python setup.py 1install, you can use the newly installed
module—for example, from a Python interactive session—as follows:

>>> import hello
>>> print(hello.helloworld())

Hello, Python extensions world!

>>>

Extending Python with Python'sCAPI | 5

o
m

ig
g3
e
23
=]

a3
o

2]
I
73
o
0
o
<
=
=
o
=)

Return Values of Python’s C APl Functions

All functions in the Python C API return either an int or a PyObject*. Most
functions returning an int return 0 in case of success and -1 to indicate errors.
Some functions return results that are true or false: these functions return 0 to
indicate false and an integer not equal to @ to indicate true, and never indicate
errors. Functions returning PyObject* return NULL in case of errors. See Chapter 6
for more details on handling and raising errors.

The Initialization Module

The PyInit_x function must contain, at a minimum, a call to the function Py_Mod
ule_Create with a single parameter, the address of the struct PyModuleDef that
defines the module’s details. In addition, PyInit_x may contain one or more calls to
the functions listed in Table 25-1, all returning -1 on error and 0 on success.

Table 25-1. Functions that can be called by PyInit_x

PyModule_ int PyModule_AddIntConstant(PyObject* module, char*
AddIntConstant name, long value)
Adds to the module module an attribute named name with integer value
value.

PyModule_AddObject 1int PyModule_AddObject(PyObject* module, char*
name, PyObject* value)
Adds to the module module an attribute named name with the value value
and steals a reference to value, as covered in “Reference Counting” on page
7.

PyModule_ int PyModule_AddStringConstant(PyObject* module, char*
AddStringConstant name, char* value)
Adds to the module module an attribute named name with the string value
value (encoded in UTF-8, and 0-terminated as usual in C code).

Sometimes, as part of the job of initializing your new module, you need to access
something within another module. If you were coding in Python, you would
just import othermodule, then access attributes of othermodule. When coding a
Python extension in C, it can be almost as simple: call PyImport_Import for the
other module, then PyModule_GetDict to get the other module’s __dict__. These
functions are described in Table 25-2.

Table 25-2. Functions for accessing items in other modules

PyImport_Import PyObject* PyImport_Import(PyObject* name)
Imports the module named in Python string object name and returns a
new reference to the module object, like Python’s __import__(name).
PyImport_Import isthe highest-level, simplest, and most often used way
to import a module.

6 | Chapter25: Extending and Embedding Classic Python

PyModule_GetDict PyObject* PyModule_GetDict(PyObject* module)
Returns a borrowed reference (see “Reference Counting” on page 7) to the
dictionary of the module module.

The PyMethodDef struct

To add functions to a module (or nonspecial methods to new types, as covered in
“Defining New Types” on page 28), you must describe the functions or methods
in an array of PyMethodDef structs, and terminate the array with a sentinel (i.e., a
struct whose fields are all © or NULL). PyMethodDef is defined as follows:

typedef struct {

char* ml_name; /* Python name of function or method */

PyCFunction ml_meth; /* pointer to C function implementing it */
int ml_flags; /* flag describing how to pass arguments */
char* ml_doc; /* docstring for the function or method */

} PyMethodDef

You must cast the second field to (PyCFunction) unless the C function’s signature
is exactly PyObject* function(PyObject* self, PyObject* args), which is the
typedef for PyCFunction. This signature is correct when ml_flags is METH_O, which
indicates a function that accepts a single argument, or METH_VARARGS, which indi-
cates a function that accepts positional arguments. For METH_O, args is the only
argument. For METH_VARARGS, args is a tuple of all arguments, to be parsed with the
C API function PyArg_ParseTuple. However, ml_flags can also be METH_NOARGS,
which indicates a function that accepts no arguments, or METH_KEYWORDS, which
indicates a function that accepts both positional and named arguments. For
METH_NOARGS, the signature is PyObject* function(PyObject* self), without fur-
ther arguments. For METH_KEYWORDS, the signature is:

PyObject* function(PyObject* self, PyObject* args, PyObject* kwds)

args is the tuple of positional arguments, and kwds is the dictionary of named argu-
ments; both are parsed with the C API function PyArg_ParseTupleAndKeywords. In
these cases, you do need to explicitly cast the second field to (PyCFunction).

When a C-coded function implements a module’s function, the self parameter
of the C function is NULL, for any value of the ml_flags field. When a C-coded
function implements a nonspecial method of an extension type, the self parameter
points to the instance on which the method is being called.

Reference Counting

Python objects live on the heap, and C code sees them as pointers to instances of
type PyObject*. Each PyObject counts how many references to itself are outstand-
ing and destroys itself when the number of references goes down to zero. To make
this possible, your code must use Python-supplied macros: Py_INCREF to add a
reference to a Python object, and Py_DECREF to abandon a reference to a Python
object. The Py_XINCREF and Py_XDECREF macros are like Py_INCREF and Py_DECREF,

Extending Python with Python's CAPI | 7

o
m

ig
g3
e
23
=]

a3
o

2]
I
73
o
0
o
<
=
=
o
=)

http://www.maxi-pedia.com/what+is+heap+and+stack

but you may also use them innocuously on a null pointer. The test for a nonnull
pointer is implicitly performed inside the Py_XINCREF and Py_XDECREF macros,
saving you the little bother of writing out that test explicitly when you don’t know
for sure whether the pointer might be null.

A PyObject* p, which your code receives by calling or being called by other func-
tions, is known as a new reference when the code that supplies p has already called
Py_INCREF on your behalf. Otherwise, it is known as a borrowed reference. Your
code is said to own new references it holds, but not borrowed ones. You can call
Py_INCREF on a borrowed reference to make it into a reference that you own; you
must do this when you will use the reference across calls to code that might cause
the count of the reference you borrowed to be decremented. You must always call
Py_DECREF before abandoning or overwriting references that you own, but never
on references you don’t own. Therefore, understanding which interactions transfer
reference ownership and which ones rely on reference borrowing is absolutely
crucial. For most functions in the C API, and for all functions that you write and
Python calls, two general rules apply:

o PyObject* arguments are borrowed references.

o A PyObject* returned as the function’s result transfers ownership.

For each of these rules, there are a few exceptions for some functions in the C APL
PyList_SetItem and PyTuple_SetItenm steal a reference to the item they are setting
(but not to the list or tuple object into which theyre setting it), meaning that they
take ownership even though by the general rules that item would be a borrowed
reference. PyList_SET_ITEM and PyTuple_SET_ITEM, C preprocessor macros which
implement faster versions of the item-setting functions, are also reference thieves,
as is PyModule_AddObject, covered in Table 25-1. There are no other exceptions to
the first rule. The rationale for these exceptions, which may help you remember
them, is that the object you just created will be owned by the list, tuple, or module,
so the reference stealing semantics saves you an unnecessary use of Py_DECREF
immediately afterward.

The second rule has more exceptions than the first one. There are several cases
in which the returned PyObject* is a borrowed reference rather than a new refer-
ence. The abstract functions—whose names begin with PyObject_, PySequence_,
PyMapping_ , and PyNumber_—return new references. This is because you can call
them on objects of many types, and there might not be any other reference to the
object that they return (i.e., the returned object might have to be created on the fly).
The concrete functions—whose names begin with PyList_, PyTuple_, PyDict_, and
so on—return a borrowed reference when the semantics of the object they return
ensure that there must be some other reference to the returned object somewhere.

8 | Chapter 25: Extending and Embedding Classic Python

In this chapter, we mention all cases of exceptions to these rules (i.e., reasonably
frequent cases of return of borrowed references, and rare cases of reference stealing
from arguments) on all functions we cover. When we do not explicitly say other-
wise, the function follows the rules: its PyObject* arguments, if any, are borrowed
references, and the PyObject* result that it returns, if any, is a new reference.

Accessing Arguments

A function that has ml_flags in its PyMethodDef set to METH_NOARGS is called from
Python with no arguments. The corresponding C function has a signature with only
one argument, self. When ml_flags is METH_O, Python code calls the function with
exactly one argument. The C function’s second argument is a borrowed reference to
the object that the Python caller passes as the argument’s value.

When ml_flags is METH_VARARGS, Python code calls the function with any number
of positional arguments, which the Python interpreter implicitly collects into a
tuple. The C function’s second argument is a borrowed reference to the tuple. Your
C code then calls the PyArg_ParseTuple function, described here:

PyArg_ParseTuple 1int PyArg_ParseTuple(PyObject* tuple, char* format, ...)
Returns @ for errors, and a value not equal to 0 for success. tupleis the
PyObject* that was the C function’s second argument. formatis a C string
that describes mandatory and optional arguments. The remaining arguments of
PyArg_ParseTuple are addresses of C variables in which to put the values
extracted from the tuple. Any PyObject* variables among the C variables are
borrowed references.

Table 25-3 lists the commonly used code strings, of which zero or more are joined
to form the string format.

Table 25-3. Format codes for PyArg_parseTuple

Code Ctype(s) Meaning

C int A Python bytes or bytearray of length 1 becomes a C
int.

C int A Python str of length 1 becomesa C int.

d double A Python float becomes a Cdouble.

D Py_Complex A Python complex becomes a CPy_Complex.

es const char* + char** A Python str without embedded NULs, encoded with

the encoding named by the const char* ('utf-8'
when that pointer is NULL) becomes a C char* pointing
to a newly allocated NUL-terminated buffer (C code must
eventually free the buffer via PyMem_Free).

Extending Python with Python'sCAPI | 9

o
m

3
g3
e
23
=]

a3
o

2]
I
©n
@,
0
o
<
=
=
o
=]

Code Ctype(s) Meaning

es# const char* + char** Like es, but the str can have embedded NULs, and

+ Py_ssize t* the buffer is not NUL-terminated and is newly allocated
only when the char** initially points to a NULL char*
(otherwise, it must point to a pointer to an already-allocated
buffer, and the location where the Py_ssize_t* points
is set to the new buffer length—which must be <= the
previous one, or else the call raises a ValueError). When
the buffer gets newly allocated, the length of the new buffer
goes where the Py_ssize_t* points.

et const char* + char** Like es, but the Python object can also be a by tes or
bytearray (in which case Python ignores the encoding: it
just copies the bytes to the newly allocated buffer).

et# const char* + char** Like es#, but the Python object can also be a by tes or
+ Py_ssize_t* bytearray (in which case Python ignores the encoding: it
just copies the bytes to the buffer).

f float A Python float becomes a C float.

i, 1 int APython int becomes a C int/unsigned int.

k, K unsigned long A Python int becomes a Cunsigned long/
unsigned long long.

1L long int A Python int becomes a C long/long long.

n Py_ssize_t A Python int becomes a CPy_ssize_t.

0 PyObject* Gets a non-NULL borrowed reference to the Python
argument.

0! type + PyObject* Like 0, plus runtime type checking (see “Passing general
objects” on page 11).

0& convert + void* Arbitrary conversion (see “Passing general objects” on page
).

p int Evaluates any Python object as either true (it then sets the C
int to 1) or false (it then sets the C int to 0).

s const char* A Python str without embedded NULs becomes a C
const char* (encoded in UTF-8). No allocation is
necessary.

s* Py_buffer Copies a Python str (encoded in UTF-8), bytes, or

bytearray into the Py_buffer the caller provides.

s# const char* + Py_ssize_t AnyPython str (encoded in UTF-8) or bytes becomesa C
address (that points to the characters of the str or bytes
argument) and a length. No allocation is necessary.

S PyBytesObject* A Python bytes becomes a borrowed reference to a Python
object.

10 | Chapter25: Extending and Embedding Classic Python

Code Ctype(s) Meaning

w* Py_buffer Copies a Python bytearray (or any other Python object
that implements the read/write buffer interface) into the
Py_buffer the caller provides.

y const char* A Python by tes without embedded NULLs becomes a C
const char*. No allocation is necessary.

y* Py_buffer Like s*, but the Python object must be a by tes or
bytearray, nota str. Best way to receive binary data.

yi# const char* + Py_ssize_t APython bytes becomesa Caddress and length. No
allocation is necessary.

Y PyByteArrayObject* A Python by tearray becomes a borrowed reference to a
Python object.

z const char* Like s, but the Python object can also be None (in which case

the Cpointer is set to NULL).

z* Py_buffer Like z*, but the Python object can also be None (in which
case the field buf in the Py_buffer is set to NULL).

z# const char* + Py_ssize_t Like s#, but the Python object can also be None (in which
case the C pointer is set to NULL).

(...) Asper... A Python sequence is treated as one argument per item.

| Indicates that the following arguments are optional.

$ Indicates that the following arguments are keyword
only (must come after | and only works with
PyArg_ParseTupleAndKeywords).

Format end, followed by function name for error messages.

; Format end, followed by entire error message text.

Code formats d to n (and other rarely used codes for tiny and short ints on the
C side) accept numeric arguments from Python. Python “coerces” the correspond-
ing values. For example, a code of 1 can correspond to a Python float; Python
truncates the fractional part as if using the built-in function int. Py_Complex is a
C struct with two fields named real and imag, both of type double. PyArg_ParseTu
ple will cause Python to raise an OverflowError exception when a given Python
value exceeds the supported range for the target C type.

Passing general objects

0 is the most general format code and accepts any argument, which you can later
check and/or convert as needed. The variant 0! corresponds to two arguments in
the variable arguments: first the address of a Python type object, then the address of
a PyObject*. 0! checks that the corresponding value belongs to the given type (or
any subtype of that type) before setting the PyObject* to point to the value; other-
wise, it raises TypeError (the whole call fails, and the error is set to an appropriate

Extending Python with Python's CAPI | 11

o
m

3
g3
e
23
=]

a3
o

2]
I
©n
@,
0
o
<
=
=
o
=)

https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTupleAndKeywords

TypeError instance, as covered in Chapter 6). The variant 0& also corresponds to
two arguments in the variable arguments: first the address of a converter function
you coded, then a void* (i.e., any address). The converter function must have the
signature int convert(PyObject*, void*). Python calls your conversion function
with the value passed from Python as the first argument, and the void* from the
variable arguments as the second argument. The conversion function must either
return 0 and raise an exception to indicate an error, or return 1 and store whatever
is appropriate via the void* it gets.

Passing “strings”

There are many ways to pass Python “strings” in the general sense (str, bytes, and
bytearray objects, sometimes demanding that the “string” contain no embedded
null characters) as C arguments (i.e., as NUL-terminated arrays of chars, when
feasible; or else, in a more general address+length arrangement). For example:

o The code format s accepts a string from Python and the address of a char*
(i.e., a char**) among the variable arguments. It changes the char* to point at
the string’s buffer, which your C code must treat as a read-only, nul-terminated
array of chars (i.e., a typical C string; however, your code must not modify
it). The Python string must contain no embedded null characters; the resulting
encoding is UTF-8. s# is similar, but corresponds to two arguments among the
variable arguments: first the address of a char*, then the address of an int,
which gets set to the string’s length. The Python string can contain embedded
nulls, and therefore so can the buffer to which the char* is set to point.

o z and z# are similar to s and s#, but the corresponding Python argument can
also be None, in which case the C-side char* is set to NULL.

« y and y# are similar to s and s#, but the corresponding Python argument is a
bytes, not a str. Strings are a typical example of read-only buffers. es and es#
are also similar to s and s#, but they also accept an optional encoding name
(by default, 'utf-8") with which to encode the str into bytes, and use a newly
allocated buffer (which the C code must eventually free with PyMem_Free). et
and et# are similar to es and es#, but the Python object can also be a bytes
or bytearray, in which case Python ignores the encoding and just copies the
bytes into the newly allocated buffer.

All of these string-accepting formats also have variants ending with * (s*, z*, y*,
es*, et*) where the C argument is a struct Py_buffer which the caller supplies;
in these cases, the function fills up the struct according to the incoming Python
string. There’s also a w* (without a non-* form) where the Python object must be a
bytearray (or other read/write buffer).

12 | Chapter25: Extending and Embedding Classic Python

Structuring the format

When one of the arguments is a Python sequence of known fixed length, you can
use format codes for each of its items, and corresponding C addresses among the
variable arguments, by grouping the format codes in parentheses. For example,
the code (ii) corresponds to a Python sequence of two numbers and, among the
remaining arguments, corresponds to two addresses of ints.

The format string may include a vertical bar (]) to indicate that all following argu-
ments are optional. In this case, you must initialize the C variables, whose addresses
you pass among the variable arguments for later arguments, to suitable default
values before you call PyArg_ParseTuple. PyArg_ParseTuple does not change the C
variables corresponding to optional arguments that were not passed in a given call
from Python to your C-coded function.

An example

For example, here’s the start of a function to be called with one mandatory integer
argument, optionally followed by another integer argument defaulting to 23 if
absent (rather like def f(x, y=23, /): in Python, except that the arguments must
be numbers):

PyObject* f(PyObject* self, PyObject* args) {
int x, y=23;
if(!PyArg_ParseTuple(args, "i|i1", &x, &y)
return NULL;
/* rest of function snipped */
}

The format string may optionally end with : name to indicate that name must be
used as the function name if any error messages result. Alternatively, the format
string may end with ; text to indicate that text must be used as the error message
if PyArg_ParseTuple detects errors (this form is rarely used).

Named (aka “keyword”) arguments

A function that has ml_flags in its PyMethodDef set to METH_KEYWORDS accepts
positional and named arguments. Python code calls the function with any number
of positional arguments, which the Python interpreter collects into a tuple, and
named arguments, which the Python interpreter collects into a dictionary. The C
function’s second argument is a borrowed reference to the tuple, and the third one
is a borrowed reference to the dictionary. Your C code then calls the PyArg_Parse
TupleAndKeywords function, described here:

Extending Python with Python’s CAPI | 13

o
m

ig
g3
e
23
=]

a3
o

2]
I
73
o
0
o
<
=
=
o
=)

PyArg_ParseTupleAnd 1int PyArg_ParseTupleAndKeywords(PyObject*

Keywords tuple, PyObject* dict, char* format, char**
kwlist, ...)
Returns © for errors, and a value not equal to @ for success. tupleis the
PyObject* that was the C function’s second argument. dict is the
PyObject* that was the C function’s third argument. format is the same as
for PyArg_ParseTuple, except that it cannot include the (.. . .) format
code to parse nested sequences, but can optionally include a $ (aftera |) to
indicate that all following arguments are optional and named only.
kwlistis an array of char* terminated by a NULL sentinel, with the names
of the parameters, one after the other.

For example, the following C code:

static PyObject*
func_c(PyObject* self, PyObject* args, PyObject* kwds)
{
static char* argnames[] = {"x", "y", "z", NULL};
double x, y=0.0, z=0.0;
1f(!PyArg_ParseTupleAndKeywords(args,kwds,"d|dd",argnames,&x,8&y,&z))
return NULL;
/* rest of function snipped */

is roughly equivalent to this Python code:

def func_py(x, y=0., z=0.):
x, y, z = map(float, (x,y,z))
rest of function snipped

Creating Python Values

C functions that communicate with Python must often build Python values, both to
return as their PyObject* result and for other purposes, such as setting items and
attributes. The simplest and handiest way to build a Python value is most often with
the Py_BuildValue function:

Py_Buildvalue PyObject* Py_BuildValue(char* format, ...)
format s a Cstring (similar to the one you pass to PyArg_ParseTuple) describing
the Python object to build. The following arguments of Py_BuildValue are C values
from which the result is built. The PyObject* result is a new reference.

Table 25-4 lists the commonly used code strings, of which zero or more are joined
into string format. Py_BuildValue builds and returns a tuple if format contains two
or more format codes, or if format begins with (and ends with). Otherwise, the
result is not a tuple. When you pass buffers—as, for example, in the case of format
code s#—Py_Buildvalue copies the data. You can therefore modify, abandon, or
free() your original copy of the data after Py_Buildvalue returns. Py_Buildvalue

14 | Chapter25: Extending and Embedding Classic Python

always returns a new reference (except for format code N). Called with an empty
format, Py_BuildValue('') returns a new reference to None.

Table 25-4. Main format codes for Py_Buildvalue

Code Ctype Meaning

B unsigned char ACunsigned char becomesa Python int.

b char A Cchar becomes a Python int.

C char A Cchar becomes a Python str of length 1.

c char A Cchar becomes a Python by tes of length 1.

D double A Cdouble becomes a Python float.

d Py_Complex* ACPy_Complex becomes a Python complex.

f float A C float becomes a Python float.

H unsigned short ACunsigned short becomesa Python int.

h short A Cshort becomes a Python int.

I unsigned int ACunsigned intbecomesaPython int.

i int A Cint becomes a Python int.

K unsigned long long ACunsigned long long becomesa Python int (if the
platform supports it).

k unsigned long ACunsigned long becomesa Python int.

L long long AClong long becomes a Python int (if the platform supports
it).

1 long A Clong becomes a Python int.

n Py_ssize_t ACPy_ssize_t becomesa Python int.

N PyObject* Passes a Python object and steals a reference, or passes NULL if the
pointer is NULL.

0 PyObject* Passes a Python object and INCREFs it, or passes NULL if the
pointer is NULL.

0& convert + void* Arbitrary conversion (see immediately after this table).

s char* A C0-terminated char* becomes a Python str (decoding with

'utf-8"'), or None if the pointer is NULL.

s# char* + int A Cchar* and length become a Python str (decoding with
'utf-8"'), or None if the pointer is NULL.

u const wchar_t* A Cwide character (wchar) (UTF-16 or UCS-4) NUL-terminated
string becomes a Python str, or None if the pointer is NULL.

u# const wchar_t* + int A Cwide character (wchar) (UCS-2 or UCS-4) string and length
become a Python str, or None if the pointer is NULL.

y char* + int A Cchar NUL-terminated string becomes a Python bytes, or
None if the pointer is NULL.

Extending Python with Python’s CAPI | 15

o
m

35
g3
e
23
=]

a3
o

2]
I
©n
@,
0
o
<
=
=
o
=]

Code Ctype Meaning

y# char* + int A Cchar string and length become a Python bytes, or None if
the pointer is NULL.

z char* A Co-terminated char* becomes a Python str (decoding with
'utf-8"'), or None if the pointer is NULL.

z# char* + int A Cchar* and length become a Python str (decoding with
'utf-8"'), or None if the pointer is NULL.

(...) Asper... Builds a Python tuple from C values.

[...] Asper... Builds a Python list from C values.

{...} Asper... Builds a Python dictionary from C values, alternating keys and

values (must be an even number of C values).

The code 0& corresponds to two arguments among the variable arguments: first,
the address of a converter function you code, then a void* (i.e., any address). The
converter function must have the signature PyObject* convert(void*). Python
calls the conversion function with the void* from the variable arguments as the
only argument. The conversion function must either return NULL and raise an
exception (as covered in the next section) to indicate an error, or return a new
reference PyObject* built from data obtained through the void*.

The code {...} builds dictionaries from an even number of C values, alternately
keys and values. For example, Py_Buildvalue("{issi}",23,"zig","zag",42)
returns a new PyObject* for {23: 'zig', 'zag': 42}.

Note the crucial difference between codes N and 0: N steals a reference from the
corresponding PyObject* value among the variable arguments, so it's convenient
to build an object with a reference you own that you would otherwise have to
Py_DECREF. 0 does not steal a reference, so it is convenient to build an object with a
reference you don’t own, or a reference you must also keep elsewhere.

Exceptions

To propagate exceptions raised from other functions you call, just return NULL as
the PyObject* result from your C function. To raise your own exceptions, first set
the current exception indicator, then return NULL. Python’s built-in exception classes
(covered in “Standard Exception Classes” in Chapter 6) are globally available with
names starting with PyExc_, such as PyExc_AttributeError, PyExc_KeyError, and
so on. Your extension module can also supply and use its own exception classes.
The most commonly used C API functions related to raising exceptions are listed in
Table 25-5.

16 | Chapter25: Extending and Embedding Classic Python

Table 25-5. C API functions for raising exceptions

PyErr_Format

PyObject* PyErr_Format(PyObject* type, char*
format, ...)
Raises an exception of class type, which must be either a built-
in such as PyExc_IndexError oran exception class created with
PyErr_NewException. Builds the associated value from the format string
format, which has syntax similar to C's printf’s, and the following C values
indicated as variable arguments (. . .) above. Returns NULL, so your C code can
just use, for example:

return PyErr_Format(PyExc_KeyError,

"Unknown key name (%s)", thekeystring);

PyErr_NewException

PyObject* PyErr_NewException(char*
name, PyObject* base, PyObject* dict)
Extends the exception class base, with extra class attributes and methods from
dictionary dict (usually NULL, indicating “no extra class attributes or methods”;
that is, the same as an empty dict). Creates a new exception class named
name (the string name must be of the form "modulename. classname")
and returns a new reference to the new class object. When base is NULL, uses
PyExc_Exception as the base class. You normally call this function during
initialization of a module object. For example:
PyModule_AddObject(module, "error",
PyErr_NewException(
"mymodule.error", NULL, NULL));

PyErr_NoMemory

PyObject* PyErr_NoMemory()
Raises an out-of-memory error and returns NULL, so your code can just use:
return PyErr_NoMemory();

PyErr_SetFromErrno

PyObject* PyErr_SetFromErrno(PyObject* type)
Raises an exception of class type, which must be a built-in
such as PyExc_OSError or an exception class created with
PyErr_NewException. Takes all details from errno, which C standard
library functions and system calls set for many error cases, and the standard C
library function strerror, which translates such error codes into appropriate
strings. Returns NULL, so your code can just use, for example:

return PyErr_SetFromErrno(PyExc_IOError);

PyErr_SetFromErrno
WithFilename

PyObject* PyErr_SetFromErrnoWithFilename(PyObject*
type, char* filename)

Like PyErr_SetFromErrno, but also provides the string i lename as
part of the exception’s value. When fi lename is NULL, works just like
PyErr_SetFromErrno.

PyErr_SetObject

vold PyErr_SetObject(PyObject* type, PyObject* value)
Raises an exception of class type, which must be a built-in

such as PyExc_KeyError or an exception class created with
PyErr_NewException, with value as the associated value (a borrowed
reference). PyErr_SetObject is a void function (i.e., returns no value).

Extending Python with Python's CAPI | 17

ol
o m

838
“ o3
ﬁgg_
vas5
< 2@
S350
ow >
S 2

PyErr_SetString voild PyErr_SetString(PyObject* type, char* message)
Raises an exception of class type, which must be a built-in
such as PyExc_KeyError or an exception class created with
PyErr_NewException, with message (NUL-terminated, encoded in UTF-8)
as the error message.

Your C code may want to deal with an exception and continue, as a try/except
statement would let you do in Python code. Table 25-6 lists the most commonly
used C API functions related to catching exceptions.

Table 25-6. C API functions for catching exceptions

PyErr_Clear voild PyErr_Clear()
Clears the error indicator. Innocuous if no error is pending.

PyErr_ExceptionMatches 1int PyErr_ExceptionMatches(PyObject* type)
Call only when an error is pending, as indicated by a non-NULL return
value from PyErr_Occurred; otherwise the whole program might
crash. Returns a value !=0 when the pending exception is an instance of
the given type or any subclass of type, or @ when the pending exception
is not such an instance.

PyErr_Occurred PyObject* PyErr_Occurred()
Returns NULL if no error is pending; otherwise, a borrowed reference
to the type of the pending exception. (Don't use the specific returned
value; instead, call PyErr_ExceptionMatches to catch exceptions of
subclasses as well, as is normal and expected.)

PyErr_Print voild PyErr_Print()
Call only when an error is pending, as indicated by a non-NULL return
value from PyErr_Occurred; otherwise the whole program might
crash. Outputs a standard traceback to sys. stderr, then clears the error
indicator.

If you need to process errors in very advanced ways, study other error-related
functions of the C API, such as PyErr_Fetch, PyErr_Normalize, PyErr_GivenExcep
tionMatches, and PyErr_Restore, in the online docs. This book does not cover
those advanced, rarely needed possibilities.

Abstract Layer Functions

The code for a C extension typically needs to use some Python functionality. For
example, your code may need to examine or set attributes and items of Python
objects, call Python-coded and Python built-in functions and methods, and so on.
In most cases, the best approach is for your code to call functions from the abstract
layer of Python’s C APIL These are functions that you can call on any Python
object (functions whose names start with PyObject_), or on any object within a
wide category, such as mappings, numbers, or sequences (with names starting with
PyMapping_, PyNumber_, and PySequence_).

18 | Chapter25: Extending and Embedding Classic Python

https://docs.python.org/3/c-api/exceptions.html

Many of the functions callable specifically on a typed object in these categories
duplicate functionality also available from PyObject_ functions. In these cases,
for generality, you should almost invariably use the “abstract” PyObject_ function
instead. We don’t cover such almost-redundant functions in this book.

Functions in the abstract layer raise Python exceptions if you call them on objects
to which they are not applicable. All of these functions accept borrowed references
for PyObject* arguments and return a new reference (NULL for an exception) if they
return a PyObject* result.

The most frequently used abstract layer functions are listed in Table 25-7.

Table 25-7. Commonly used abstract layer functions

PyCallable_Check

int PyCallable_Check(PyObject* x)
Returns 1 (true) when x is callable, like callable(x); otherwise, returns ©
(false).

PyIter_Check

int PyIter_Check(PyObject* x)
Returns 1 (true) when x is an iterator; otherwise, returns © (false).

PyIter_Next

PyObject* PyIter_Next(PyObject* x)

Returns the next item from iterator x. Returns NULL without raising
any exception when x's iteration is finished (i.e., when next (x) raises
StopIteration).

PyNumber_Check

int PyNumber_Check(PyObject* x)
Returns 1 (true) when x is a number; otherwise, returns 0 (false).

PyObject_Call

PyObject* PyObject_Call(PyObject*

f, PyObject* args, PyObject* kwds)

(alls the callable Python object f with positional arguments in tuple args
(may be empty, but never NULL) and named arguments in dict kwds.
Returns the call's result. Like f(*args, **kwds).

PyObject_ PyObject* PyObject_CallFunction(PyObject* f, char*
CallFunction format, ...)
(alls the callable Python object £ with positional arguments described by
string format, with the same format codes as Py_BuildValue. When
format is NULL, calls x with no arguments. Returns the call’s result.
PyObject_ PyObject* PyObject_CallFunctionObjArgs(PyObject*
CallFunctionObjArgs f, ..., NULL)

Calls the callable Python object f with positional arguments passed as zero or
more PyObject* arguments. Returns the call’s result.

PyObject_CallMethod

PyObject* PyObject_CallMethod(PyObject* x, char*
method, char* format, ...)

(alls the method named me thod of Python object x with positional
arguments described by string format, with the same format codes as
Py_BuildValue (see Table 25-4). When format is NULL, calls the
method with no arguments. Returns the call’s result.

Extending Python with Python's CAPI | 19

m
3
<3
]
o
o
3
Q

pue 6uipuaix3y

2]
I
©n
@,
0
o
<
=
=
o
=)

PyObject_
CallMethodObjArgs

PyObject* PyObject_CallMethodObjArgs(PyObject*
X, char* method, ..., NULL)

Calls the method named me thod of Python object x with positional
arguments passed as zero or more PyObject* arguments. Returns the
call’s result.

PyObject_CallObject

PyObject* PyObject_CallObject(PyObject* f, PyObject*
args)

(alls the callable Python object £ with positional arguments in tuple args
(may be NULL or an empty tuple to pass no arguments). Returns the call’s

result. Like f(*args).

PyObject_
DelAttrString

int PyObject_DelAttrString(PyObject* x, char* name)
Deletes x's attribute named name, like del x. name.

PyObject_Delltem

int PyObject_Delltem(PyObject* x, PyObject* key)
Deletes x's item with key (or index) key, like del x[key].

PyObject_ int PyObject_DelItemString(PyObject* x, char* key)
DelItemString Deletes x's item with key key, like del x[key].

PyObject_ PyObject* PyObject_GetAttrString(PyObject* x, char*
GetAttrString name)

Returns x's attribute name, like x. name.

PyObject_GetItem

PyObject* PyObject_GetItem(PyObject* x, PyObject*
key)
Returns x's item with key (or index) key, like x[key].

PyObject_
GetItemString

int PyObject_GetItemString(PyObject* x, char* key)
Returns x's item with key key, like x[key].

PyObject_GetIter

PyObject* PyObject_GetIter(PyObject* x)
Returns an iterator on x, like iter (x).

PyObject_
HasAttrString

int PyObject_HasAttrString(PyObject* x, char* name)
Returns 1 (true) if x has an attribute name, like hasattr(x, name);
otherwise, returns 0 (false).

PyObject_IsTrue

int PyObject_IsTrue(PyObject* x)
Returns 1 (true) if x is true for Python, like bool(x); otherwise, returns 0
(false).

PyObject_Length

int PyObject_Length(PyObject* x)
Returns x's length, like Ten(x).

PyObject_Repr

PyObject* PyObject_Repr(PyObject* x)
Returns x’s detailed string representation, like repr(x).

20 | Chapter 25: Extending and Embedding Classic Python

PyObject_RichCompare

PyObject* PyObject_RichCompare(PyObject*

X, PyObject* y, intop)

Performs the comparison indicated by op between x and y, and returns the
result as a new reference to a Python bool object (True or False). op

can be Py_EQ, Py_NE, Py_LT, Py_LE, Py_GT, or Py_GE, corresponding
to Python comparisons x == y,x != y,x < y,x <= y,x > y,0r

x >= y.Returns NULL when it needs to indicate that an exception has been
raised.

PyObject_ int PyObject_RichCompareBool(PyObject*
RichCompareBool X, PyObject* y, intop)
Like PyObject_RichCompare, but returns 0 for false, 1 for true, or -1 to
indicate that an exception has been raised.
PyObject_ int PyObject_SetAttrString(PyObject*
SetAttrString x, char* pame, PyObject* v)

Sets x's attribute named name to v, like x. name = v.

PyObject_SetItem

int PyObject_SetItem(PyObject*
x, PyObject* k, PyObject *v)
Sets x's item with key (or index) key to v, like x[key] = v.

PyObject_
SetItemString

int PyObject_SetItemString(PyObject* x, char*
key, PyObject *v)
Sets x's item with key key to v, like x[key] = v.

PyObject_Str

PyObject* PyObject_Str(PyObject* x)
Returns x's readable string form, like str(x). To get the result as bytes, use
PyObject_Bytes.

PyObject_Type

PyObject* PyObject_Type(PyObject* x)
Returns x’s type object, like type(x).

PySequence_Contains

int PySequence_Contains(PyObject* x, PyObject* v)
Returns 1 (true) if vis an item in x, like v in x; otherwise, returns 0 (false).

PySequence_DelSlice

int PySequence_DelSlice(PyObject* x, int start, int
stop)
Deletes x's slice from startto stop, like del x[start:stop].

PySequence_Fast

PyObject* PySequence_Fast(PyObject* x)

Returns a new reference to a tuple with the same items as sequence

x, unless x is a list, in which case PySequence_Fast returns a

new reference to x. When you need to get many items of an arbitrary
sequence x, it's fastest to call t = PySequence_Fast(x), then call
PySequence_Fast_GET_ITEM(t, 1) asmany timesasneeded, and
finally call Py_DECREF(t).

PySequence_Fast_
GET_ITEM

PyObject* PySequence_Fast_GET_ITEM(PyObject* x, int
1)

Returns item 1 of x, where x must be the result of PySequence_Fast
and !=NULL,and @ <= i < PySequence_Fast_GET_SIZE(t).
Violating these conditions can cause program crashes. This approach is
optimized for speed, not for safety.

Extending Python with Python's CAPI | 21

o,z
om
230
2. o3
ﬁgg.
ves
< 2@
S50
ow s
5 a

PySequence_Fast_ int PySequence_Fast_GET_SIZE(PyObject* x)
GET_SIZE Returns the length of x. x must be the result of PySequence_Fast
and !=NULL.

PySequence_GetSlice PyObject* PySequence_GetSlice(PyObject* x, int
start, int stop)
Returns x's slice from startto stop, like x[start: stop].

PySequence_L1ist PyObject* PySequence_List(PyObject* x)
Returns a new list object with the same items as x, like Tist(x).

PySequence_SetSlice 1int PySequence_SetSlice(PyObject*
X, int start, int stop, PyObject* v)
Sets x's slice from startto stopto v, like x[start: stop] = v.Just
as in the equivalent Python statement, v must be an iterable.

PySequence_Tuple PyObject* PySequence_Tuple(PyObject* x)
Returns a new reference to a tuple with the same items as x, like tuple(x).

Other functions, whose names start with PyNumber_, let you perform numeric
operations. Unary PyNumber functions, which take one argument PyObject* x and
return a PyObject*, are listed in Table 25-8 with their Python equivalents.

Table 25-8. Unary PyNumber functions

Function Python equivalent

PyNumber_Absolute abs(x)

PyNumber_Float float(x)

PyNumber_Invert ~X

PyNumber_Long int(x)

PyNumber_Negative -x

PyNumber_Positive +x

Binary PyNumber functions, which take two PyObject* arguments x and y and
return a PyObject*, are similarly listed in Table 25-9.

Table 25-9. Binary PyNumber functions

Function Python equivalent

PyNumber_Add X +y
PyNumber_And X &y
PyNumber_Divide x /]y
PyNumber_Divmod divmod(x, y)

PyNumber_FloorDivide x /]y

PyNumber_Lshift X <<y

22 | Chapter 25: Extending and Embedding Classic Python

Function Python equivalent

PyNumber_MatrixMultiply x @ vy

PyNumber_Multiply X *y
PyNumber_Or x|y
PyNumber_Remainder X %y
PyNumber_Rshift X >>y
PyNumber_Subtract X -y
PyNumber_TrueDivide x|y
PyNumber_Xor X Ny

All the binary PyNumber functions have in-place equivalents whose names start with
PyNumber_InPlace, such as PyNumber_InPlaceAdd and so on. The in-place versions
try to modify the first argument in place, if possible, and in any case return a new
reference to the result, be it the first argument (modified) or a new object. Python’s
built-in numbers are immutable; therefore, when the first argument is a number of
a built-in type, the in-place versions work just the same as the ordinary versions.
The function PyNumber_Divmod returns a tuple with two items (the quotient and the
remainder) and has no in-place equivalent.

There is one ternary PyNumber function, PyNumber_Power:

PyNumber_Power PyObject* PyNumber_Power(PyObject*
X, PyObject* y, PyObject* z)
When zis Py_None, returns x raised to the y power, like x ** y or, equivalently,
pow(x, y).0therwise, retuns (x ** y) % z, like pow(x, y, Zz).Thein-
place version is named PyNumber_InPlacePower.

Concrete Layer Functions

Each specific type of Python built-in object supplies concrete functions to operate
on instances of that type, with names starting with Py<type>_ (e.g., PyInt_ for
functions related to Python ints). Most such functions duplicate the functionality
of abstract layer functions or auxiliary functions covered earlier in this chapter,
such as Py_BuildValue, which can generate objects of many types. In this section,
we cover just a few frequently used functions from the concrete layer that provide
unique functionality, or very substantial convenience or extra speed. For most types,
you can check whether an object belongs to the type by calling Py<type>_Check,
which also accepts instances of subtypes, or Py<type>_CheckExact, which accepts
only instances of type, not of subtypes. Signatures are the same as for the function
PyIter_Check, covered in Table 25-10.

Extending Python with Python's CAPI | 23

o
m

ig
g3
e
23
=]

@3
o

2]
I
73
o
0
o
<
=
=
o
=)

Table 25-10. Frequently useful concrete functions

PyDict_GetItem

PyObject* PyDict_GetItem(PyObject* x, PyObject* key)
Returns a borrowed reference to the value corresponding to key key of
dictionary x, or NULL if key is not in x.

PyDict_Merge

int PyDict_Merge(PyObject* x, PyObject* y, int
override)

Updates dictionary x by merging the items of dictionary y into x. override
determines what happens when a key k is present in both x and y: when
overrideis 0, x[k] remains the same; otherwise, x[k] is replaced
(“overridden”) by the value y[k].

PyDict_MergeFromSeq2

int PyDict_MergeFromSeq2(PyObject* x,

PyObject* y, intoverride)

Like PyDict_Merge, except that y is not a dictionary but a sequence
of sequences, where each subsequence has length 2 and is used as a
(key, value) pair.

PyDict_Next

int PyDict_Next(PyObject* x,

int* pos, PyObject** k, PyObject** v)

Iterates over items in dictionary x. You must initialize *pos to © at the start
of the iteration: PyDict_Next uses and updates * pos to keep track of
its place. For each successful iteration step, PyDict_Next returns 1; when
there are no more items, it returns 0. The function updates *k and *v to
point to the next key and value, respectively (borrowed references), at each
step that returns 1. You can pass either k or v as NULL when you are not
interested in the key or value. During an iteration, you must not change the
set of x's keys in any way, but you can change x's values as long as the set of
keys remains identical.

PyFloat_AS_DOUBLE

double PyFloat_AS_DOUBLE(PyObject* x)
Returns the C double value of Python float x, very quickly, without any
error checking.

PyList_GET_ITEM

PyObject* PyList_GET_ITEM(PyObject* x, int pos)
Returns the pos-th item of list x, without any error checking.

PyList_New

PyObject* PyList_New(int length)
Returns a new, uninitialized list of the given Zength. You must then initialize
the list, typically by calling PyList_SET_ITEM length times.

PyList_SET_ITEM

int PyList_SET_ITEM(PyObject* x,

int pos, PyObject* v)

Sets the pos-th item of list x to v, without any error checking. Steals a
reference to v. Use only right after creating a new list x with PyList_New.

PyUnicode_AS_UNICODE

char* PyUnicode_AS_UNICODE(PyObject* x)

Returns a pointer to the internal bytes buffer of string x, fast, without error
checking. Don’t modify the buffer, unless you just allocated it by calling
PyUnicode_FromStringAndSize(NULL, size).

%

Chapter 25: Extending and Embedding Classic Python

PyUnicode_ int PyUnicode_AsStringAndSize(PyObject* x, char**
AsStringAndSize buffer, int* length)
Puts a pointer to the internal buffer of string x in *buffer, and x's length
in *Length. Don't modify the buffer, unless you just allocated it by calling
PyUnicode_FromStringAndSize(NULL, size).

PyUnicode_FromFormat PyObject* PyUnicode_FromFormat(char* format, ...)
Returns a new Python string built from format string format, which has
syntax similar to printf’s, and the following C values indicated as variable
arguments (. . .) above.

PyUnicode_ PyObject* PyUnicode_FromStringAndSize(char*
FromStringAndSize data, int size)
Returns a Python string of length size, copying size bytes from data.
When datais NULL, the Python string is uninitialized, and you must
initialize it. You can get the pointer to the string’s internal buffer by calling
PyUnicode_AS_UNICODE.

PyTuple_GET_ITEM PyObject* PyTuple_GET_ITEM(PyObject* x, int pos)
Returns the pos-th item of tuple x, without error checking.

PyTuple_New PyObject* PyTuple_New(int length)
Returns a new, uninitialized tuple of the given Length. You must initialize
the tuple, usually via PyTuple_SET_ITEM length times.

PyTuple_SET_ITEM int PyTuple_SET_ITEM(PyObject* x, int pos,
PyObject* v)
Sets the pos-th item of tuple x to v, without error checking. Steals a
reference to v. Use only immediately after creating a new tuple x with
PyTuple_New.

A Simple Extension Example

Example 25-1 exposes the functionality of Python C API functions PyDict_Merge
and PyDict_MergeFromSeq2 for Python use. The update method of dicts works like
PyDict_Merge with override=1, but this example is (very slightly!) more general.

o
m

3
g3
HE
23
=]

a3
o

2]
I
73
o
0
o
<
=
=
o
=)

Example 25-1. A simple Python extension module merge.c

#include <Python.h>
static PyObject*
merge(PyObject* self, PyObject* args, PyObject* kwds)
{
static char* argnames[] = {"x","y","override",NULL};
PyObject *x, *y;
int override = 0;
if(!PyArg_ParseTupleAndKeywords(args, kwds, "0!0|i", argnames,
&PyDict_Type, &x, &y, &override))
return NULL;
if(-1 == PyDict_Merge(x, y, override)) {
if(!PyErr_ExceptionMatches(PyExc_AttributeError))

Extending Python with Python’s CAPI | 25

return NULL;

PyErr_Clear();

if(-1 == PyDict_MergeFromSeq2(x, y, override))
return NULL;

}

return Py_BuildValue("");
}
static char merge_docs[] = "\

merge(x, y, override=False): merge into dict x the items of dict y (or\n\
the pairs that are the items of y, if y is a sequence), with\n\
optional override. Alters dict x directly, returns None.\n\
E
static PyObject*
mergenew(PyObject* self, PyObject* args, PyObject* kwds)
{
static char* argnames[] = {"x","y","override" ,NULL};
PyObject *x, *y, *result;
int override = 0;
if(!PyArg_ParseTupleAndKeywords(args, kwds, "0!0|i", argnames,
&PyDict_Type, &x, &y, &override))
return NULL;
result = PyObject_CallMethod(x, "copy", "");
if(!result)
return NULL;
if(-1 == PyDict_Merge(result, y, override)) {
if(!PyErr_ExceptionMatches(PyExc_AttributeError))
return NULL;
PyErr_Clear();
if(-1 == PyDict_MergeFromSeq2(result, y, override))
return NULL;

}
return result;
}
static char mergenew_docs[] = "\

mergenew(x, y, override=False): merge into dict x the items of dict y\n\
(or the pairs that are the items of y, if y is a sequence), with\n\
optional override. Does NOT alter x, but rather returns the\n\
modified copy as the function's result.\n\

static PyMethodDef merge_funcs[] = {

{"merge", (PyCFunction)merge, METH_VARARGS | METH_KEYWORDS,
merge_docs},

{"mergenew", (PyCFunction)mergenew, METH_VARARGS | METH_KEYWORDS,
mergenew_docs},

{NULL}

b

static char merge_module_docs[] = "Example extension module";

static struct PyModuleDef merge_module = {

PyModuleDef_HEAD_INIT,

"merge",
merge_module_docs,
-1,

26 | Chapter 25: Extending and Embedding Classic Python

merge_funcs

};

PyMODINIT_FUNC
PyInit_merge(void)
{

return PyModule_Create(&merge_module);

}

This example declares as static every function and global variable in the C source
file except PyInit_merge, which must be “public” so Python can call it. Since the
functions and variables are exposed to Python via PyMethodDef structures, Python
does not need to see their names directly. Declaring them static is best: it ensures
their names don't accidentally end up in the whole program’s global namespace, as
might otherwise happen on some platforms, possibly causing conflicts and errors.

As described in Table 25-3, the format string "0!0|1" passed to PyArg_ParseTu
pleAndKeywords indicates that the function merge accepts three arguments from
Python: an object with a type constraint, a generic object, and an optional integer.
At the same time, the format string indicates that the variable part of PyArg_Parse
TupleAndKeywords’s arguments must contain four addresses in the following order:
the address of a Python type object, two addresses of PyObject* variables, and the
address of an int variable. The int variable must be previously initialized to its
intended default value, since the corresponding Python argument is optional.

In keeping with these requirements, after the argnames argument the code passes
&PyDict_Type (i.e., the address of the dictionary type object), then the addresses of
the two PyObject* variables. Finally, it passes the address of the variable override,
an int that was previously initialized to 0, since the default when the override
argument is not explicitly passed from Python is False (“no overriding”). When
the return value of PyArg_ParseTupleAndKeywords is 0, the code returns NULL
to propagate the exception; this diagnoses most cases where Python code passes
incorrect arguments to our new function merge.

When the arguments appear to be OK, it tries PyDict_Merge, which succeeds if y is
a dictionary. When PyDict_Merge raises an AttributeError, indicating that y does
not have a keys attribute, the code clears the error and tries again, this time with
PyDict_MergeFromSeq2, which succeeds when y is a sequence of pairs. If that also
fails, it returns NULL to propagate the exception. Otherwise, it returns None in the
simplest way (i.e., with return Py_Buildvalue("")) to indicate success.

The mergenew function basically duplicates merge’s functionality; however, merge
new does not alter its arguments, but rather builds and returns a new dictionary
as the function’s result. The C API function PyObject_CallMethod lets mergenew
call the copy method of its first Python-passed argument, a dictionary object, and
obtain a new dictionary object, which it then alters (with exactly the same logic
as the merge function). It then returns the altered dictionary as the function result
(thus, there’s no need to call Py_BuildValue in this case).

Extending Python with Python’s CAPI | 27

o
m

3
g3
e
23
=]

a3
o

2]
I
©n
o
0
o
<
=
=
o
=)

The code of Example 25-1 must be in a source file named merge.c. In the same
directory, create the following script named setup.py:

from setuptools import setup, Extension
setup(name="'merge',
ext_modules=[Extension('merge',sources=['merge.c'])])

Run python setup.py install at a shell prompt in this directory (ideally, in a
virtual environment; or, if you insist, with a user ID having appropriate privileges
to write into your Python installation, or using sudo on Unix-like systems if nec-
essary). This builds the dynamically loaded library for the merge module, and
copies it to the appropriate directory for the virtual environment (or your Python
installation). Now, Python code (in the appropriate virtual environment, if any) can
use the module. For example:

import merge

x={'a":1,'b"':2 }

merge.merge(x,[['b',3],['c"',4]1])

print(x) #{'a':1, 'b':2, 'c':4 }

print(merge.mergenew(x,{'a':5,'d":6},

override=1)) # {'a’':5, 'b':2, 'c':4, 'd':6 }

print(x) #{'a':1, 'b':2, 'c':4 }
This example shows the difference between merge (which alters its first argument)
and mergenew (which returns a new object and does not alter its argument). It also
shows that the second argument can be either a dictionary or a sequence of two-
item subsequences, and shows the default operation (where keys that are already in
the dict are left alone) versus the override option (where keys coming from the
second argument take precedence, as in Python dictionaries’ update method).

Defining New Types

In your extension modules, you will often want to define new types and make them
available to Python. A type’s definition is held in a struct named PyTypeObject.
Most of the fields of PyTypeObject are pointers to functions. Some fields point to
other structs, which in turn are blocks of pointers to functions. PyTypeObject also
includes a few fields that give the type’s name, size, and behavior details (option
flags). You can leave almost all fields of PyTypeObject set to NULL if you do not
supply the related functionality. You can point some fields to functions in the
Python C API to supply fundamental object functionality in standard ways.

The best way to implement a type is to copy from the Python sources one of three
files in the directory Modules, which Python supplies exactly for such didactical
purposes, and edit it. The files are named xxlimited.c, xxmodule.c, and xxsubtype.c
(the latter focused on subclassing built-in types, with two example types, one each
subclassing from list and dict, respectively).

See the online docs for detailed information on PyTypeObject and other related
structs. The file Include/object.h in the Python sources contains the declarations of
these types, as well as several important comments that you should study.

28 | Chapter 25: Extending and Embedding Classic Python

https://docs.python.org/3/c-api/typeobj.html

Per-instance data

To represent each instance of your type, declare a C struct that starts, right after
the opening brace, with the macro PyObject_HEAD. The macro expands into the
data fields that your struct must begin with to be a Python object. These fields
include the reference count and a pointer to the instance’s type. Any pointer to
your structure can be correctly cast to a PyObject*. You can choose to look at this
practice as a kind of C-level implementation of a (single) inheritance mechanism.

The PyTypeObject struct defining your type must contain the size of your per-
instance struct, as well as pointers to the C functions you write to operate on
your structure. Thus, you normally place PyTypeObject toward the end of your
C-coded module’s source code, after the definitions of the per-instance struct and
of all the functions operating on instances of that struct. Each x pointing to a
struct starting with PyObject_HEAD, and in particular each PyObject* x, has a field
x->ob_type that is the address of the PyTypeObject structure that is x’s Python type
object.

The PyTypeObject definition
Given a per-instance struct such as:

typedef struct {

PyObject_HEAD

/* other data needed by instances of this type, omitted */
} mytype;

the related PyTypeObject struct almost invariably begins in a way similar to:

static PyTypeObject t_mytype = {

/* tp_head */ PyObject_HEAD_INIT(NULL) /* NULL for portability */
/* tp_name */ "mymodule.mytype", /* type name, including module */
/* tp_basicsize */ sizeof(mytype),

/* tp_itemsize */ 0, /* 0 except variable-size type */
/* tp_dealloc */ (destructor)mytype_dealloc,

/* tp_print */ 0, /* usually 0, use str instead */
/* tp_getattr */ 0, /* usually 0 (see getattro) */
/* tp_setattr */ 0, /* usually 0 (see setattro) */
/* tp_compare*/ 0, /* see also richcompare */

/* tp_repr */ (reprfunc)mytype_str, /* like Python's __repr__*/

/* rest of struct omitted */

For maximum portability, the PyObject_HEAD_INIT macro at the start of the PyTy
peObject struct must have an argument of NULL. During module initialization,
call PyType_Ready(&t_mytype), which, among other tasks, inserts in t_mytype the
address of its type (the type of a type is also known as a metatype), normally
&PyType_Type. Another slot in PyTypeObject pointing to another type object is
tp_base, which comes later in the structure. In the structure definition itself,
you must have a tp_base of NULL, again for maximum compatibility. Before you
invoke PyType_Ready(&t_mytype), you can optionally set t_mytype.tp_base to the

Extending Python with Python’s CAPI | 29

o
m

3
g3
e
23
=]

a3
o

2]
I
©n
@,
0
o
<
=
=
o
=)

address of another type object. When you do so, your type inherits from the other
type, just as a class coded in Python can optionally inherit from another type. For a
Python type coded in C, “inheriting” means that, for most fields of PyTypeObject, if
you set the field to NULL, PyType_Ready copies the corresponding field from the base
type. A type must explicitly assert in its field tp_flags that it is usable as a base type;
otherwise, no type can inherit from it.

The tp_itemsize field is of interest only for types that, like tuples, have instances
of different sizes, and can definitely determine each instance’s size at creation time.
Most types just set tp_itemsize to 0. You'll usually set the fields tp_getattr and
tp_setattr to NULL, since they exist only for backward compatibility; modern types
use the fields tp_getattro and tp_setattro instead. The tp_repr field is typical of
most of the following fields, which we omit here: the field holds the address of a
function, which corresponds directly to a Python special method (here, __repr__).
You can set the field to NULL, indicating that your type does not supply the special
method; otherwise, set the field to point to an appropriate function. When you set
the field to NULL but point to a base type from the tp_base slot, you inherit the
special method, if any, from your base type. You often need to cast your functions
to the specific typedef type that a field needs (here, the reprfunc type for the
tp_repr field) because the typedef has a first argument PyObject* self, while
your functions—being specific to your type—normally use more specific pointers.
For example:

static PyObject* mytype_str(mytype* self) { ... /* rest omitted */

Alternatively, you can declare mytype_str with a PyObject* self, then use a cast
(mytype*)self in the functions body. Either alternative is acceptable style, but it is
more common to locate the casts in the PyTypeObject declaration.

Instance initialization and finalization

The task of finalizing your instances is split among two functions. The tp_dealloc
slot must never be NULL, except for immortal types (i.e., types whose instances are
never deallocated). Python calls x->ob_type->tp_dealloc(x) on each instance x
whose reference count decreases to 0, and the function thus called must release
any resources held by object x, including x’s memory. When an instance of mytype
holds no other resources that must be released (in particular, no owned references
to other Python objects that you would have to DECREF), mytype’s destructor can be
extremely simple:

static void mytype_dealloc(PyObject *x)
{

}

The function in the tp_free slot has the specific task of freeing x’s memory. Often,
you can just put in slot tp_free the address of the C API function PyObject_Del.

x->o0b_type->tp_free((PyObject*)x);

30 | Chapter25: Extending and Embedding Classic Python

The task of initializing your instances is split among three functions. To allocate
memory for new instances of your type, put in slot tp_alloc the C API function
PyType_GenericAlloc, which does absolutely minimal initialization, clearing the
newly allocated memory bytes to 0 except for the type pointer and reference count.
Similarly, you can often set the field tp_new to the C API function PyType_Generi
cNew. In this case, you can perform all per-instance initialization in the function you
put in slot tp_init, which has the signature:

int init_fn_name(PyObject *self, PyObject *orgs, PyObject *kwds)

The positional and named arguments to the function in slot tp_init are those
passed when calling the type to create the new instance, just as, in Python, the
positional and named arguments to __init__ are those passed when calling the
class. Again, just like for types (classes) defined in Python, the general rule is to do
as little initialization as feasible in tp_new and do as much as possible in tp_init.
Using PyType_GenericNew for tp_new accomplishes this. However, you can choose
to define your own tp_new for special types, such as ones that have immutable
instances, where initialization must happen earlier. The signature is:

PyObject* new_fn_name(PyObject *subtype, PyObject *args, PyObject *kwds)

The function in tp_new returns the newly created instance, normally an instance of
subtype (which may be a subtype of yours). The function in tp_init, on the other
hand, must return 0 for success, or -1 to indicate an exception.

If your type is subclassable, it is important that any instance invariants be estab-
lished before the function in tp_new returns. For example, if it must be guaranteed
that a certain field of the instance is never NULL, that field must be set to a non-NULL
value by the function in tp_new. Subtypes of your type might fail to call your
tp_init function; therefore, such indispensable initializations, needed to establish
type invariants, should always be in tp_new for subclassable types.

Attribute access

Access to attributes of your instances, including methods (as covered in “Attribute
Reference Basics” in Chapter 4), goes through the functions in slots tp_getattro
and tp_setattro of your PyTypeObject struct. Normally, you use the standard
C API functions PyObject_GenericGetAttr and PyObject_GenericSetAttr, which
implement standard semantics. Specifically, these API functions access your type’s
methods via the slot tp_methods, pointing to a sentinel-terminated array of PyMe
thodDef structs, and your instances’ members via the slot tp_members, a sentinel-
terminated array of PyMemberDef structs:

typedef struct {

char* name; /* Python-visible name of the member */

int type; /* code defining the data type of the member */
int offset; /* member's offset in the per-instance struct */
int flags; /* READONLY for a read-only member */

Extending Python with Python's CAPI | 31

o
m

3
g3
e
23
=]

a3
o

2]
I
73
@,
0
o
<
=
=
o
=)

char* doc; /* docstring for the member */
} PyMemberDef;

As an exception to the general rule that including Python.h gets you all the declara-
tions you need, you have to include structmember.h explicitly to have your C source
see the declaration of PyMemberDef.

type is generally T_OBJECT for members that are PyObject*, but many other type
codes are defined in Include/structmember.h for members that your instances hold
as C-native data (e.g., T_DOUBLE for double, or T_STRING for char* encoded in
UTF-8). For example, say that your per-instance struct is something like this:

typedef struct {
PyObject_HEAD
double datum;
char* pame;

} mytype;

To expose to Python the per-instance attributes datum (read/write) and name (read-
only), define the following array and point your PyTypeObject’s tp_members to it:

static PyMemberDef[] mytype_members = {
{"datum", T_DOUBLE, offsetof(mytype, datum), 0, "Current datum"},
{"name", T_STRING, offsetof(mytype, name), READONLY, "Datum name"},
{NULL},
b
Using PyObject_GenericGetAttr and PyObject_GenericSetAttr for tp_getattro

and tp_setattro also provides further possibilities; see the online docs for more
details.

tp_getset points to a sentinel-terminated array of PyGetSetDef structs, the equiv-
alent of having property instances in a Python-coded class.

If your PyTypeObject’s tp_dictoffset field is not equal to @, the field’s value
must be the offset, within the per-instance struct, of a PyObject* pointing to a
Python dictionary. In this case, the generic attribute access API functions use that
dictionary to let Python code set arbitrary attributes on your type’s instances, just
like for instances of Python-coded classes.

Use the tp_dict field of your PyTypeObject struct to specify a per-type (not
per-instance) dictionary. You can set slot tp_dict to NULL, and PyType_Ready will
initialize the dictionary appropriately. Alternatively, you can set tp_dict to a dic-
tionary of type attributes; PyType_Ready will then add other entries to that same
dictionary, in addition to the type attributes you set. It is generally easier to start
with tp_dict set to NULL, call PyType_Ready to create and initialize the per-type
dictionary, and then, if need be, add any further entries to the dictionary via explicit
C code.

The tp_flags field is a long whose bits determine your type struct’s exact layout,
mostly for backward compatibility; set this field to Py_TPFLAGS_DEFAULT to indicate

32 | Chapter25: Extending and Embedding Classic Python

https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_getattro

that you are defining a normal, modern type. If your type supports cyclic garbage
collection, set tp_flags to Py_TPFLAGS_DEFAULT |Py_TPFLAGS_HAVE_GC. Your type
should support cyclic garbage collection if instances of the type contain PyObject*
fields that might point to arbitrary objects and form part of a reference loop. To
enable this support, its not enough to add Py_TPFLAGS_HAVE_GC to the tp_flags
field; you also have to supply appropriate functions, indicated by the fields tp_tra
verse and tp_clear, and register and unregister your instances appropriately with
the cyclic garbage collector. Supporting cyclic garbage collection is an advanced
subject, and we don’t cover it further in this book; see the online docs for details.
Similarly, we don't cover the advanced subject of supporting weak references, also
well covered online.

The field tp_doc, a char*, is a nul-terminated character string that is your type’s
docstring.

Other fields point to structs (whose fields point to functions); you can set each
such field to NULL to indicate that you support none of those functions. The fields
pointing to such blocks of functions are: tp_as_number, for special methods typi-
cally supplied by numbers; tp_as_sequence, for special methods typically supplied
by sequences; tp_as_mapping, for special methods typically supplied by mappings;
and tp_as_buffer, for the special methods of the buffer protocol.

For example, objects that are not sequences can still support one or some of the
methods listed in the block to which tp_as_sequence points, and in this case
the PyTypeObject struct must have a non-NULL tp_as_sequence field, even if
the block of function pointers it points to is in turn mostly full of NULLs. An
example of this would be Python’s dict class, which supplies a __contains__ special
method so that you can check if x is in d when d is a dictionary. At the C code
level, the method is a function pointed to by the field sq_contains, which is
part of the PySequenceMethods struct to which the field tp_as_sequence points.
Therefore, the PyTypeObject struct for the dict type, named PyDict_Type, has
a non-NULL value for tp_as_sequence, even though a dictionary supplies no other
field in PySequenceMethods than sq_contains, and therefore all other fields in
*(PyDict_Type.tp_as_sequence) are NULL.

Type definition example

Example 25-2 is a complete Python extension module that defines the very simple
type intpatr, each instance of which holds two integers named first and second.

Example 25-2. Defining a new intpair type

#include "Python.h"
#include "structmember.h"
/* per-instance data structure */
typedef struct {
PyObject_HEAD

Extending Python with Python’s CAPI | 33

o
m

3
g3
g2
23
=]

a3
o

2]
I
©n
@,
0
o
<
=
=
o
=)

https://docs.python.org/3/c-api/gcsupport.html
https://docs.python.org/3/extending/newtypes.html#weakref-support

int first, second;
} intpair;
static int
intpair_init(PyObject *self, PyObject *args, PyObject *kwds)
{
static char* nams[] = {"first","second",NULL};
float first_arg, second_arg;
if(!PyArg_ParseTupleAndKeywords(args, kwds, "ff", nams,
&first_arg, &second_arg))
return -1;
((intpair*)self)->first = (int)first_arg;
((intpair*)self)->second = (int)second_arg;
return 0;
}
static void
intpailr_dealloc(PyObject *self)
{

}

static PyObject*
intpair_str(PyObject* self)
{

self->ob_type->tp_free(self);

return PyUnicode_FromFormat("intpair(%d,%d)",
((intpair*)self)->first, ((intpair*)self)->second);
}
static PyMemberDef intpair_members[] = {
{"first", T_INT, offsetof(intpair, first), 0, "first item" },
{"second", T_INT, offsetof(intpair, second), 0, "second item" },

{NULL}

b

static PyTypeObject t_intpair = {
PyObject_HEAD_INIT(O) /* tp_head */
"intpair.intpair", /* tp_name */
sizeof(intpair), /* tp_basicsize */
0, /* tp_itemsize */
intpair_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
intpair_str, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */

Py_TPFLAGS_DEFAULT,
"two ints (first,second)",

34 | Chapter25: Extending and Embedding Classic Python

0, /* tp_traverse */

0, /* tp_clear */

0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */

0, /* tp_iternext */

0, /* tp_methods */
intpair_members, /* tp_members */

0, /* tp_getset */

0, /* tp_base */

0, /* tp_dict */

0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
intpair_1init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_Del, /* tp_free */

b
static PyMethodDef no_methods[] = { {NULL} };
static char intpair_docs[] =
"intpair: data type with int members .first, .second\n";
static struct PyModuleDef intpair_module = {
PyModuleDef_HEAD_INIT,
"{ntpair",
intpair_docs,
-1,
no_methods

1

PYMODINIT_FUNC

JINIPNE gm=
PyInit_intpair(void) 235
{ 682

. . . . 'U%:

PyObject* this_module = PyModule_Create(&intpair_module); §:5-2

PyType_Ready(&t_intpair); g@Q 3

PyObject_SetAttrString(this_module, "intpair", (PyObject*)&t_intpair);

return this_module;

}

The intpatir type defined in Example 25-2 gives minimal benefits when compared
to an equivalent definition in Python, such as:

class intpair:
__slots__ = ('first', 'second")
def __init__(self, first, second):
self.first = first
self.second = second
def __repr__(self):
return f'intpair({self.first},{self.second})’

Extending Python with Python’s CAPI | 35

The C-coded version does, however, ensure that the two attributes are integers,
truncating floating-point or complex number arguments as needed (in Python, you
could approximate that functionality by passing the arguments through int, but it
wouldn’t be quite the same thing, as Python would then also accept argument values
such as the string '23"', while the C version wouldn’t).? For example:

import intpair
x=intpair.intpair(1.2,3.4) # x is: intpair(1,3)
print(x.first, x.second) # prints '1 3'

The C-coded version of intpair occupies a little less memory than the Python
version. However, the purpose of Example 25-2 is purely tutorial: to present a
C-coded Python extension that defines a simple new type.

Extending Python Without Python’s CAPI

You can code Python extensions in other classic compiled languages besides C. For
Fortran, we recommend Pearu Peterson’s F2PY. This is now part of NumPy, since
Fortran is often used for numeric processing. If, as recommended for numerical
computations, you have installed numpy, then you don't need to also separately
install f2py.

For C++, you could of course use the same approaches as for C (adding extern "C"
where needed). Many C++-specific alternatives exist; out of them all, SIP, CLIF, and
cppyy (with full support for PyPy as well as CPython) appear to be the ones most
actively maintained and supported. If your C++ compiler offers a fully compliant
implementation of C++11 (which, more than a decade since that standard’s release,
is likely to be the case), pybind11 is also well worth considering; its documentation
explains its advantages clearly and in detail.

A popular alternative to the C API is Cython, a “Python dialect” focused on gener-
ating C code from Python-like syntax, with a few additions centered on precise
specification of the C-level side of things. We highly recommend it, and cover it in
“Cython” on page 38.

A new project with much promise for the future is HPy, a direct alternative to
Python’s C API with zero overhead and many advantages (easy, fast portability
to PyPy and other Python implementations, a “debug mode” to help your devel-
opment, an arguably more elegant design, and so forth). HPy is currently in an
early alpha release stage of development, so we cannot (yet!) recommend it for
production use; however, if you know how to program in C, we do recommend you
read HPy’s documentation, pip install hpy (in a virtual environment, of course),
and explore it a bit.

2 Calling operator.index instead of int would be closer to the C-coded funtionality.

36 | Chapter25: Extending and Embedding Classic Python

https://pypi.org/project/F2PY/
http://www.numpy.org/
https://riverbankcomputing.com/software/sip/intro
https://google.github.io/clif/
https://cppyy.readthedocs.io/en/latest/
https://pybind11.readthedocs.io/en/stable/
http://cython.org/
https://hpyproject.org/
https://docs.hpyproject.org/en/latest/

CFFI

Another excellent alternative to the Python C API is CFFI, the C Foreign Function
Interface for Python. It originated in the PyPy project, and is perfect for it, but also
fully supports CPython.

You can use CFFI in various modes—in-line or out-of-line, and, separately, ABI or
API:

in-line mode
Everything gets set up anew each time you import your Python module using
CFFL

out-of-line mode
A separate step prepares an extension module, and then you import that
extension module from your Python code.

ABI mode
CFFI accesses existing C libraries (dynamic ones, typically with the exten-
sion .dll in Windows, .so in Linux, and .dylib in macOS; or static ones, typically
with the extension ./ib in Windows and .a in Unix-like systems) at the binary
level.

API mode
With better speed and robustness, you can use CFFI in API mode, in which
CFFI accesses C libraries by generating, then compiling, C code. This mode
also lets you use C libraries for which you have source code (that is, .h
and .c files) rather than binary forms already compiled (i.e., dynamic or static
libraries).

API mode needs access to a C compiler for your machine, but nowadays that isn’t
really a problem, since good, free C compilers are available for just about every
environment (for a few suggestions, see “What C compiler do you need?” on page 3,
earlier in this chapter).

When used in in-line or ABI mode, CFFI roughly matches the functionality of the
standard Python library module ctypes, discussed briefly in the next section, but
with greater speed and reliability (e.g., fewer mysterious crashes due to minor, hard-
to-diagnose errors). When you use the out-of-line and API modes, it’s usually even
preferable (much faster, and much more reliable). CFFI’s excellent documentation
explains all of this clearly, and includes many instructive examples.

ctypes

The ctypes module of the Python standard library lets you load existing C-coded
dynamic libraries and call functions defined in those libraries from your Python
code. The module is popular because it allows handy “hacks” without requiring
access to a C compiler or even a third-party Python extension. However, the
resulting programs can often be fragile, platform-dependent, and hard to port to

Extending Python Without Python’s CAPI | 37

o
m

ig
g3
e
23
=]

a3
o

2]
I
73
o
0
v
<
=
=
o
=)

https://pypi.python.org/pypi/cffi
https://cffi.readthedocs.io/en/latest/overview.html
https://docs.python.org/3/library/ctypes.html

other versions of the same libraries, since they rely on details of the libraries’ binary
interfaces.

We recommend avoiding ctypes in production code, and using instead one of the
excellent alternatives covered or mentioned in this chapter.

Cython

The Cython language offers a convenient way to write extensions for Python.* The
Cython website provides excellent documentation of all details of Cython program-
ming; in this section; we cover only a few essentials to help you get started.

Cython is a nearly complete subset of Python (with a declared intention of even-
tually becoming a complete superset of it); there are just four marginal, minor
differences that the Cython authors do not intend to fix. To this vast subset of
Python, it then adds a few statements that allow C-like declarations, and optional
C-like types for variables. You can automatically compile Cython programs (source
files with the extension .pyx) into efficient machine code (via an intermediate C
code generation step), producing Python-importable extensions.

Here is a simple example; code it in the source file hello.pyx in a new empty
directory:

def hello(char *name):
return 'Hello, ' + name +

This is almost exactly like Python, except that the parameter name is preceded by
char*, declaring that its type must always be a C 0-terminated string. As you can
see from the body, in your Cython code, you can use its value as a normal Python
string.

When you install Cython (pip install cython), you also gain a way to build
Cython source files into Python extensions via setuptools. Code the following in
the file setup.py in your new directory:

from setuptools import setup
from Cython.Build import cythonize

setup(name="hello', ext_modules=cythonize('hello.pyx"'))

Now run python setup.py installin the new directory (ignore warnings; theyre
expected and benign), and import and use the new module—for example, from an
interactive Python session:

>>> import hello
>>> hello.hello('Alex"')

'Hello, Alex!'

3 Cython supports CPython “natively”; however, it’s also usable with PyPy, with several caveats.

38 | Chapter 25: Extending and Embedding Classic Python

https://cython.readthedocs.io/en/latest/src/userguide/pypy.html
http://cython.org/
http://docs.cython.org/en/latest/src/userguide/limitations.html

The cdef and cpdef statements and function parameters

You can use the Cython keyword cdef mostly as you would def, but cdef defines
functions that are internal to the extension module, not visible on the outside, while
def functions can also be called by Python code that imports the module. cpdef
functions can be called both internally (with speed very close to cdef ones) and by
external Python (just like def ones), but are otherwise identical to cdef functions.

For any kind of function, parameters and return values with unspecified types—or,
even better, ones explicitly typed as object—become PyObject* pointers in the
generated C code (with implicit and standard handling of reference incrementing
and decrementing). cdef functions may also have parameters and return values of
any other C type; def functions, in addition to untyped (or, equivalently, object)
arguments, can only accept int, float, and char* types. For example, here’s a cdef
function to specifically sum two integers:

cdef int sum2i(int a, int b):
return a + b

You can also use cdef to declare C variables—scalars, arrays, and pointers—pretty
much like in C:

cdef int x, y[23], *z

and declare structs, unions, and enums Pythonically (end the head clause with a
colon, then indent):

cdef struct Ural:
int x, vy
float z

Afterward, refer to the new type by name only—here, Ural. Never use the keywords
struct, union, or enum, except in the cdef declaring the type.

External declarations To interface with external C code, you can declare variables
as cdef extern, with the same effect that extern has in the C language. Usually, the
C declarations of a library you want to use are in a .h C header file; to ensure that
the Cython-generated C code includes that header file, use the following cdef:

cdef extern from "someheader.h":

and follow it with a block of indented cdef-style declarations (without repeating the
cdef in the block). Only declare functions and variables that you want to use in
your Cython code. Cython does not read the C header file—it trusts your Cython
declarations in the block, not generating any C code for them. Cython implicitly
uses the Python C API, covered at the start of this chapter, but you can explicitly
access any of its functions. For example, if your Cython file contains:

cdef extern from "Python.h":
object PyUnicode_FromStringAndSize(char *, int)

Extending Python Without Python’s CAPI | 39

o
m

ig
g3
e
23
=]

a3
o

2]
i
©n
o
0
o
<
=
=
o
=)

the following Cython code can use PyUnicode_FromStringAndSize. This may come
in handy, since, by default, C “strings” are deemed to be terminated by a zero
character, but with this function you may instead explicitly specify a C string’s
length and also get any zero character(s) it may contain.

Conveniently, Cython lets you group such declarations in .pxd files (roughly analo-
gous to C’s .h files, while .pyx Cython files are roughly analogous to C’s .c files). .pxd
files can also include cdef inline declarations, to be inlined at compile time.
A .pyx file can import the declarations in a .pxd file by using the keyword cimport,
analogous to Python’s import.

Cython comes with several useful .pxd files in its Cython/includes directory. In
particular, the .pxd file cpython already has all the useful cdef extern from
"Python.h" declarations: just cimport cpython to access them.

cdef classes A cdef class statement lets you define a new Python type in Cython.
It may include cdef declarations of attributes (which apply to every instance, not to
the type as a whole), which are normally invisible from Python code; however, you
can specifically declare attributes as cdef public to make them normal attributes
from Python’s viewpoint, or cdef readonly to make them visible but read-only
from Python (Python-visible attributes must be numbers, strings, or objects).

A cdef class supports special methods (with some caveats), properties (with a spe-
cial syntax), and (single-only) inheritance. To declare a property, use the following
in the body of the cdef class statement:

property name:

followed by indented def statements for methods __get__(self) and, optionally,
__set__(self, value) and __del__(self).

A cdef class’s __new__ is different from that of a normal Python class: the first argu-
ment is self, the new instance, already allocated and with its memory filled with
0s. Cython always calls the special method __cinit__(self) right after the instance
allocation, to allow further initialization; __init__, if defined, is called next. At
object destruction time, Cython calls the special method __dealloc__(self) to let
you undo whatever allocations __new__ and/or __cinit__ have done (cdef classes
have no __del__ special method).

There are no righthand-side versions of arithmetic special methods, such as
__radd__ to go with __add__, like in Python; rather, if (say) a + b can’t find
or use type(a).__add__, it next calls type(b).__add__(a, b). Note the order of
arguments: there’s no swapping! You may need to attempt some type checking to
ensure that you perform the correct operation in all cases.

To make the instances of a cdef class into iterators, define a special method
__next__(self).

Here is a Cython equivalent of Example 25-2:

40 | Chapter 25: Extending and Embedding Classic Python

cdef class intpair:
cdef public int first, second
def __init__(self, first, second):
self.first = first
self.second = second
def __repr__(self):
return f'intpair({self.first}, {self.second})'
Like the C-coded extension in Example 25-2, this Cython-coded extension offers
no substantial advantage with respect to a Python-coded equivalent. The simplicity
and conciseness of the Cython code is much closer to that of Python than to the
verbosity and boilerplate needed in C; yet, the machine code generated from this
Cython file is very close to what gets generated from the C code in Example 25-2.

The ctypedef statement
You can use the keyword ctypedef to declare a name (synonym) for a type, e.g.:

ctypedef char* string

The for...from statement
In addition to the usual Python for statements, Cython has another form of for:
for variable from lower_expression <= variable < upper_expression:

This is the most common form, but you could use either < or <= on either side of
the variable after the from keyword; alternatively, you could use > and/or >= to
have a backward loop (you cannot mix a < or <= on one side and > or >= on the
other).

The for...from statement is faster than the usual Python for variable in
range(...):, when the variable and loop boundaries are C-kind ints. However,
in modern Cython, for variable in range(...): is optimized to near-equivalence
to for...from, so the classic Pythonic for variable in range(...): can usually be
chosen, for simplicity and readability.

Cython expressions

In addition to Python expression syntax, Cython can use some, but not all, of
C’s additions to it. To take the address of variable var, use &var, like in C. To
dereference a pointer p, however, use p[0]; the equivalent C syntax *p is not valid
Cython. Where in C you would use p->gq, use p.q in Cython. The null pointer
uses the Cython keyword NULL. For char constants, use the syntax c'x'. For casts,
use angle brackets, such as <int>somefloat where in C you would code (int)some
float; also, use casts only on C values and onto C types, never with Python values
and types (let Cython perform type conversion for you automatically when Python
values or types occur).

Extending Python Without Python's CAPI | 41

o
m

3
g3
i
23
=]

a3
o

2]
I
73
@,
0
v
<
=
=
o
=)

A Cython example: Greatest common divisor

Euclid’s algorithm for finding the greatest common divisor (GCD) of two numbers
is quite simple to implement in pure Python:

def gcd(dividend, divisor):
remainder = dividend % divisor
while remainder:
dividend = divisor
divisor = remainder
remainder = dividend % divisor
return divisor

The Cython version is almost identical:

def gcd(int dividend, int divisor):

cdef int remainder
remainder = dividend % divisor
while remainder:

dividend = divisor

divisor = remainder

remainder = dividend % divisor
return divisor

On an old MacBook Air laptop, gcd(454803, 278255) takes about 1 microsecond
in the Python version, and 0.22 microseconds in CPython. A 350% speedup for so
little effort can be well worth the bother (assuming that this function takes up a
substantial fraction of your program’s execution time), even though the pure Python
version has some practical advantages (it runs in PyPy, not just in CPython; its
effortlessly cross-platform; and so on).

Embedding Python

If you have an application in C or C++ (or another classic compiled language),
you may want to embed Python as your application’s scripting language. To embed
Python in a language other than C, that language must be able to call C functions
(how you do that varies not just by language, but by specific implementation of the
language: what compiler, what linker, and so on). In this section, we cover the C
view of things; because the details of how to call C functions from other languages
vary widely, we don’t go into those here.

Installing Resident Extension Modules

For Python scripts to communicate with your application, it must supply extension
modules with Python-accessible functions and classes that expose the application’s
functionality. When, as is normal, these modules are linked with your application
(rather than residing in dynamic libraries that Python can load when necessary),
you'll need to register your modules with Python as additional built-in modules
by calling the PyImport_AppendInittab C API function, which has the following
signature:

42 | Chapter 25: Extending and Embedding Classic Python

PyImport_AppendInittab 1intPyImport_AppendInittab(char* name,
vold (*initfunc)(void))
name is the module name, which Python scripts use to import the
module. initfunc is the module initialization function, taking no
argument and returning no result, as covered in “The Initialization Module”
on page 6 (i.e., initfuncis the module’s function that would be named
initname for a normal extension module in a dynamic library). Call
PyImport_AppendInittab before Py_Initialize (described in
Table 25-12).

Setting Arguments

You may want to set the program name and arguments, which Python scripts
can access as sys.argv, by calling either or both of the C API functions listed in
Table 25-11.

Table 25-11. C API functions for setting arguments

Py_SetProgramName void Py_SetProgramName(char* name)
Sets the program name, which Python scripts can access as sys.argv[0].
Py_SetProgramName must be called before Py_Initialize.

PySys_SetArgv void PySys_SetArgv(int argc, char**argv)
Sets the program arguments, which Python scripts can access as sys.argv[1:],
to the argc 0-terminated strings in array argv. PySys_SetArgv must be
called after Py_Initialize.

Python Initialization and Finalization

After installing extra built-in modules and optionally setting the program name,
your application initializes Python. At the end, when Python is no longer needed,
your application finalizes Python. The relevant C API functions are listed in
Table 25-12.

Table 25-12. C API functions for initializing and finalizing Python

Py_Initialize void Py_Initialize(void)
Initializes the Python environment. Do not make any other Python C API call before
this one, except PyImport_AppendInittab and Py_SetProgramName; those
functions must be called before Py_Initialize.

Py_Finalize vold Py_Finalize(void)
Frees all memory and other resources that Python is able to free. Do not make any other
Python CAPI call after calling this function.

Embedding Python | 43

o,z
om
230
2. o3
ﬁgg.
ves
< 2@
S50
ow >
3 o

Running Python Code

Your application can run Python source code from a character string or from a
file. To run or compile Python source code, choose one of the constants defined in
Python.h, listed in Table 25-13.

Table 25-13. Python.h constants

Py_eval_input The code is an expression to evaluate (like passing 'eval' to the Python built-in
function compile).

Py_file_input The code is a block of one or more statements to execute (like 'exec' for
compile; just like in that case, a trailing ' \n' must close compound statements).

Py_single_input The code is a single statement for interactive execution (like 'single' for
compile; implicitly outputs the results of expression statements).

Running Python source code is similar to passing a source code string to Python’s
exec or eval (and entails the same security risks if that source code comes from
somewhere you do not totally, completely trust, as discussed in Chapter 14).
Table 25-14 describes two general functions you can use for this task.

Table 25-14. C API functions for running Python source code

PyRun_File PyObject* PyRun_File(FILE* fp,
char* filename, int start, PyObject* globals, PyObject*

locals)
fpis afile of Python source code open for reading. fi Lename is the name of the
file, to use in error messages. start is one of the constants Py_. . ._input that

define the execution mode. globals and locals are dicts to use as global and
local namespaces for the execution (you may use the same dict twice). PyRun_File
returns the result of the expression when startis Py_eval_input, a new reference
to Py_None otherwise, or NULL to indicate that an exception has been raised.

PyRun_String PyObject* PyRun_String(char* astring,
int start, PyObject* globals, PyObject* locals)
Like PyRun_F1ile, but the source is in the NUL-terminated string astring.

The dictionaries locals and globals are often new, empty dicts (conveniently
built by Py_Buildvalue("{}")), or the dictionary of a module. PyImport_Import
is a convenient way to get an existing module object; PyModule_GetDict gets a
module’s dictionary.

When you want to create a new module object on the fly, often in order to populate
it with PyRun_ calls, use the PyModule_New C API function:

44 | Chapter 25: Extending and Embedding Classic Python

PyModule_New PyObject* PyModule_New(char& name)
Returns a new, empty module object for a module named name. Before using the new
object, add to the object a string attribute named __file__. For example:
PyObject* newmod = PyModule_New("mymodule");
PyModule_AddStringConstant(newmod, "_file__", "<synth>");
After this code runs, the module object newmod is ready; you can get the module’s
dict with PyModule_GetDict(newmod) and pass the dict to such functions as
PyRun_String asthe globals and possibly the Zocals argument.

To run Python code repeatedly, and to separate the diagnosis of syntax errors from
that of runtime exceptions raised by the code when it runs, you can compile the
Python source to a code object, then keep the code object and run it repeatedly. This
is just as true when using the C API as when dynamically executing in Python, as
covered in “Dynamic Execution and exec” in Chapter 14. Table 25-15 lists two C
API functions you can use for this task.

Table 25-15. C API functions for compiling Python source code

Py_CompileString PyObject* Py_CompileString(char* code,
char* filename, int start)
code is a NUL-terminated string of source code. £ Lename is the name of the file
to use in error messages. start is one of the constants that define execution mode.
Py_CompileString returns the Python code object that contains the bytecode,
or NULL for syntax errors.

PyEval_EvalCode PyObject* PyEval_EvalCode(PyObject* co,
PyObject* globals, PyObject* locals)
cois a Python code object, as returned by Py_CompileString, for example.
globalsand locals are dicts (possibly the same dict) to use as the global
and local namespaces for the execution. PyEval_EvalCode returns the result of
the expression when co was compiled with Py_eval_1input, a new reference to
Py_None otherwise, or NULL to indicate the execution has raised an exception.

o,z
om
2308
2. o3
ﬁgg.
ves
< 2@
S350
ow s
3 o

Embedding Python | 45

	Chapter 25. Extending and Embedding Classic Python
	Extending Python with Python’s C API
	Building and Installing C-Coded Python Extensions
	Overview of C-Coded Python Extension Modules
	Return Values of Python’s C API Functions
	The Initialization Module
	The PyMethodDef struct
	Reference Counting
	Accessing Arguments
	Creating Python Values
	Exceptions
	Abstract Layer Functions
	Concrete Layer Functions
	A Simple Extension Example
	Defining New Types

	Extending Python Without Python’s C API
	CFFI
	ctypes
	Cython

	Embedding Python
	Installing Resident Extension Modules
	Setting Arguments
	Python Initialization and Finalization
	Running Python Code

