
1 Users of older versions can install the library from PyPI with pip install toml.

24
Packaging Programs and

Extensions

This chapter assumes that you have some Python code that you need to deliver to
other people and groups. It works on your machine, but now you have the added
complication of making it work for other people. This involves packaging your code
in a suitable format and making it available to its intended audience.

The quality and diversity of the Python packaging ecosystem have greatly improved
since the last edition, and its documentation is both better organized and much
more complete. These improvements are based on careful work to specify a Python
source tree format independent of any specific build system in PEP 517, “A Build-
System Independent Format for Source Trees,” and the minimum build system
requirements in PEP 518, “Specifying Minimum Build System Requirements for
Python Projects.” The “Rationale” section of the latter document concisely describes
why these changes were required, the most significant being removal of the need
to run the setup.py file to discover (presumably by observing tracebacks) the build’s
requirements.

The major purpose of PEP 517 is to specify the format of build definitions in a file
called pyproject.toml. The file is organized into sections called tables, each with a
header comprising the table’s name in brackets, much like a config file. Each table
contains values for various parameters, consisting of a name, an equals sign, and a
value. 3.11+ Python includes the tomllib module for extracting these definitions,
with load and loads methods similar to those in the json module.1

Although more and more tools in the Python ecosystem are using these modern
standards, you should still expect to continue to encounter the more traditional

1

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://docs.python.org/3.11/library/tomllib.html

setuptools-based build system (which is itself transitioning to the pyproject.toml
base recommended in PEP 517). For an excellent survey of packaging tools avail‐
able, see the list maintained by the Python Packaging Authority (PyPA).

To explain packaging, we first describe its development. Then we discuss poetry,
a modern standards-compliant Python build system, comparing it with the more
traditional setuptools approach that many projects continue to rely on to distrib‐
ute their software. Other PEP 517-compliant build tools worth mentioning—but
not covered further—include flit and hatch, and you should expect their number
to grow as interoperability continues to improve. For distributing relatively simple
pure Python packages, we also introduce the standard library module zipapp, and
we complete the chapter with a short section explaining how to access data bundled
as part of a package.

What We Don’t Cover in This Chapter
Apart from the PyPA-sanctioned methods, there are many other possible ways of
distributing Python code—far too many to cover in a single chapter. We do not
cover the following packaging and distribution topics, which may well be of interest
to those wishing to distribute Python code:

• Using conda•
• Using Docker•
• Various methods of creating binary executable files from Python code such as•

the following (these tools can be tricky to set up for complex projects, but they
repay the effort by widening the potential audience for an application):
— PyInstaller, which takes a Python application and bundles all the required—

dependencies (including the Python interpreter and necessary extension
libraries) into a single executable program that can be distributed as a
standalone application. Versions exist for Windows, macOS, and Linux,
though each architecture can only produce its own executable.

— PyOxidizer, the main tool in a utility set of the same name, which not only—
allows the creation of standalone executables but can also create Windows
and macOS installers and other artifacts.

— cx_Freeze, which creates a folder containing a Python interpreter, extension—
libraries, and a ZIP file of the Python code. You can convert this into either
a Windows installer or a macOS disk image.

For a more in-depth and advanced explanation of the material in this chapter, see
the “Python Packaging User Guide”, maintained by the PyPA, which offers sound
advice and useful instruction to anyone who wants to make their Python software
widely available.

2 | Chapter 24: Packaging Programs and Extensions

https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://packaging.python.org/en/latest/key_projects/
https://flit.pypa.io/en/latest/
https://hatch.pypa.io/latest/
https://docs.conda.io/en/latest
https://docs.docker.com
https://pyinstaller.org/en/stable
https://gregoryszorc.com/docs/pyoxidizer/main
https://cx-freeze.readthedocs.io/en/latest/overview.html
https://packaging.python.org/en/latest

2 Be aware that a few packages are less than friendly to virtual environments. Happily, these are few
and far between.

A Brief History of Python Packaging
Before the advent of virtual environments, maintaining multiple Python projects
and avoiding conflicts between their different dependency requirements was a
complex business involving careful management of sys.path and the PYTHONPATH
environment variable. If different projects required two different versions of the
same dependency, no single Python environment could support both. Nowadays,
each virtual environment (see “Python Environments” in Chapter 7 for a refresher
on this topic) has its own site_packages directory into which third-party and local
packages and modules can be installed in a number of convenient ways, making
it largely unnecessary to think about the mechanism.2 Having multiple versions of
Python installed on your machine is a different issue, which does not necessarily
require virtual environments (although it does no harm to use them!). Rather, vir‐
tual environments are a must to maintain multiple projects using the same Python
version but with different, possibly conflicting, dependencies.

When the Python Package Index (PyPI) was conceived in 2003, virtual environ‐
ments were not available, and there was no uniform way to package and distribute
Python code. Developers had to carefully adapt their environment to each different
project they worked on. This changed with the development of the distutils stan‐
dard library package, soon leveraged by the third-party setuptools package and its
easy_install utility. The now-obsolete platform-independent egg packaging for‐
mat was the first definition of a single-file format for Python package distribution,
allowing easy download and installation of eggs from network sources. Installing a
package used a setup.py component, whose execution would integrate the package’s
code into an existing Python environment using the features of setuptools. How‐
ever, requiring a third-party module such as setuptools was clearly not a fully
satisfactory solution.

In parallel with these developments came the creation of the virtualenv pack‐
age, vastly simplifying project management for the average Python programmer
by offering clean separation between the Python environments used by different
projects. Shortly after this, the pip utility, again largely based on the ideas behind
setuptools, was introduced. Using source trees rather than eggs as its distribution
format, pip could not only install packages but uninstall them as well. It could also
list the contents of a virtual environment and accept a versioned list of the project’s
dependencies, by convention in a file named requirements.txt.

setuptools development was somewhat idiosyncratic and not responsive to com‐
munity needs, so a fork named distribute was created as a drop-in replacement (it
installed under the setuptools name), to allow development work to proceed along
more collaborative lines. Affirming the value of Python’s open source licensing

A Brief History of Python Packaging | 3

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://pypi.org

policy, this was eventually merged back into the setuptools codebase, which is
controlled today by the PyPA.

The distutils package was originally designed as a standard library component
to help with installing extension modules (particularly those written in compiled
languages, covered in Chapter 25). Although it currently remains in the standard
library, it has been deprecated and is scheduled for removal from version 3.12,
when it will likely be incorporated into setuptools. A number of other tools have
emerged since the appearance of distutils that conform to PEPs 517 and 518, and
in this chapter we’ll look at some different ways to install additional functionality
into a Python environment.

With the acceptance in 2012 of PEP 425, “Compatibility Tags for Built Distribu‐
tions,” and PEP 427, “The Wheel Binary Package Format,” Python finally had a
specification for a binary distribution format (the wheel, whose definition has since
been updated) that would allow the distribution of compiled extension packages for
different architectures, falling back to installing from source when no appropriate
binary wheel is available.

In 2013, PEP 453, “Explicit Bootstrapping of pip in Python Installations,” deter‐
mined that the pip utility should become the preferred way to install packages in
Python, and established a process whereby it could be updated independently of
Python to allow new deployment features to be delivered without waiting for new
language releases.

These developments and many others, such as those mentioned in this chapter’s
introduction, that have rationalized the Python ecosystem, are the result of a lot of
hard work by the PyPA, to whom Python’s ruling Steering Council has delegated
most matters relating to packaging and distribution.

The Build Process
Ultimately, all Python applications, libraries, and extensions start out as source
code, organized according to the project’s needs into a source tree. Building the
project requires transforming the source tree into one or more distributions in
wheel format. The so-called build frontend performs this task by calling hooks in a
build backend specified as part of the package’s metadata. The build backend does
not necessarily need to implement all of the defined hooks: PEP 517 specifies which
ones are mandatory. You can think of the build frontend as the coordinator, and
the build backends as the component-specific build processes required to produce
the necessary artifacts for distribution. Many tools also offer features to assist with
distributing the wheels, once they’re built.

4 | Chapter 24: Packaging Programs and Extensions

https://github.com/pynutshell/pynut4/blob/main/chapters/25%20Extending%20and%20Embedding%20Classic%20Python.pdf
https://peps.python.org/pep-0425/
https://peps.python.org/pep-0427
https://packaging.python.org/en/latest/specifications/binary-distribution-format
https://packaging.python.org/en/latest/specifications/binary-distribution-format
https://peps.python.org/pep-0453

3 The Python Software Foundation runs significant infrastructure to support the PyPA, its mem‐
bership, and the Python development team. Donations to the PSF are always welcome.

Open source software often achieves the transfer by uploading distributions to
PyPI, where they are available for download and installation by the general public.
It’s to the credit of the PyPA that, after such significant refactoring of Python’s
distribution system, the humble pip install package command still works so
effectively.3

Let’s take a look at the source tree of a typical pure Python package before it’s made
ready for distribution. The package’s source code is in the src/ch24 subdirectory, and
the (pytest-based) tests are in the tests subdirectory, as shown in Example 24-1.

Example 24-1. Layout of a simple pure Python project

.
├── README.md
├── src
│ └── ch24
│ ├── __init__.py
│ ├── _version.py
│ ├── dotted_dict.py
│ └── object_dict.py
└── tests
 ├── __init__.py
 ├── test_dotted_dict.py
 ├── test_ch24.py
 ├── test_json_hooking.py
 └── test_object_dict.py

We’ll examine how this can be packaged using both poetry and setuptools after
we’ve described the structures used to transmit Python packages from one system to
another.

Entry Points
Entry points are a way to identify particular pieces of your code (modules or
functions, in most cases) by names that need not relate to the names they are
given in the logic. They have two primary purposes. First, if a package includes
command-line functionality, an entry point identifies each piece of functionality
that should be run as the result of running that entry point (setuptools calls these
console scripts, poetry simply calls them scripts). Second, you can use entry points
to make your software extensible with plug-ins (see “Creating and Discovering
Plugins” in the setuptools documentation).

The Build Process | 5

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://www.python.org/psf/donations
https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/

4 For example, it isn’t customary to package up tests as part of a distribution.
5 Pure packages can also be distributed as wheels.
6 The ABI, or application binary interface, is the machine-level interface Python offers to

extensions.

Distribution Formats
As mentioned, Python projects are organized into a directory structure usually
called the source tree. The very minimum you need to do to be able to distribute
a project with standard Python tools is to build a source distribution. This contains
some of the files from the source tree,4 along with metadata that describes both
the package and any additional artifacts required to install it. Built distributions
are a little more complex, being specific to a particular architecture and version of
Python.

Python recognizes two types of packages. Pure packages contain only Python code
and associated data. Extension packages, on the other hand, include code in com‐
piled languages that will require the attention of some non-Python tools to prepare
it for installation in what is often referred to as a build process, specific to the
architecture and environment of the target system and orchestrated by calls to the
hooks in the package’s build backend. Packages can be distributed as either source
distributions or built distributions, both of which theoretically contain the artifacts
required to install on a specific type of target.

Source distributions are compressed TAR archives (with file extension .tar.gz) that
contain all the code of the package. For a pure package to become operational in the
target environment, all you need to do is move the source distribution to the correct
location (usually a virtual environment’s site-packages directory). For an extension
package, however, a source distribution requires the target system to already have
installed all the necessary dependencies (language compilers and the like) in order
to perform the build process.

The majority of computer users don’t maintain a development environment, so
built distributions are usually a handier solution for them. They are delivered as
wheel files,5 which are compressed zip files containing everything that needs to be
added to a Python environment (of a specific version on a machine of a particular
architecture) to render the package functional. Installing a built distribution of an
extension package on a specific target is almost as simple as installing a pure Python
package, since the build work is performed prior to distribution.

A built distribution’s name contains tags, specified in PEP 425, to indicate (among
other things):

• The Python implementation and version(s), e.g., py27 for Python 2.7, py3 for•
any Python 3

• A particular ABI,6 e.g., cp38 for CPython 3.8•

6 | Chapter 24: Packaging Programs and Extensions

https://peps.python.org/pep-0425

• A specific platform, e.g., win32 or linux_i386•
PEP 427’s naming convention suggests using the following format for wheel
filenames:

{dist}-{version}(-{build_tag})?-{python_tag}-{abi_tag}-{platform_tag}.whl

A typical wheel for a built package might therefore be given a name such as
psycopg2-2.9.3-py310-cp310-macosx_12_0_arm64.whl. This specifies version 2.9.3 of
the psycopg2 package, for CPython version 3.10 on the macOS platform with an
ARM 64-bit processor. As you can see, built distribution wheels are quite specific!

Fortunately, much of this complexity is hidden from the average Python program‐
mer, who simply uses pip or a similar tool to maintain multiple virtual environ‐
ments. The tools select appropriate built distributions if they are available, and
otherwise attempt to perform the build locally from a source distribution if possible.
Unless all the required supporting software is installed on the target system, this
attempt will fail.

poetry
The poetry utility is designed to offer all the facilities required to build and publish
Python packages, having both frontend and backend build capabilities. Its primary
interface is the command line, so operations can easily be scripted, and it is config‐
ured by the [tool.poetry] table in pyproject.toml (each section of the file is known
as a “table”). poetry implements subcommands for the various tasks it can perform,
the first one you generally need being init. Issuing the poetry command on its
own gives you a list of the available subcommands.

This section is not intended to provide an exhaustive feature list for poetry, whose
documentation and command-line help are both concise and informative. Instead,
it walks you through creating a simple project to explain the major options of
poetry’s most often used subcommands.

Preparing a Project for poetry
Once you’ve installed poetry, the command poetry new project_name creates a
skeletal project structure in the directory project_name. Change into the project’s
root directory (ours is called ch24), then issue the poetry init command. This
will guide you through creating a pyproject.toml file, along the lines shown in
Example 24-2. Note that you can specify a range of compatible Python versions, as
shown here, in addition to the one that’s suggested (the version running poetry).

Example 24-2. A dialog with the poetry init command (user entries in bold)

$ cd ch24
$ poetry init
This command will guide you through creating your pyproject.toml config.

poetry | 7

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://peps.python.org/pep-0427
https://python-poetry.org
https://python-poetry.org/docs/#installation

Package name [ch24]: ↩
Version [0.1.0]: ↩
Description []: Copy of hu code for demonstration purposes
Author [Steve Holden <steve@example.com>, n to skip]: ↩
License []: MIT
Compatible Python versions [^3.10]: ^3.8 || ^3.9 || ^3.10

Would you like to define your main dependencies
 interactively? (yes/no) [yes] no
Would you like to define your development
 dependencies interactively? (yes/no) [yes] no
Generated file

[tool.poetry]
name = "ch24"
version = "0.1.0"
description = "Copy of hu code for demonstration purposes"
authors = ["Steve Holden <steve@example.com>"]
license = "MIT"

[tool.poetry.dependencies]
python = "^3.8 || ^3.9 || ^3.10"

[tool.poetry.dev-dependencies]

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

Do you confirm generation? (yes/no) [yes] yes

As you can see from the listing, poetry generated a pyproject.toml file with two
tables:

• The [tool.poetry] table establishes the basic project metadata. Its depen•
dencies subtable contains only the supported Python versions, and its dev-
dependencies subtable is initially empty, though you can enter dependencies
one by one interactively in the dialog should you so choose.

• The [build-system] table confirms poetry as the build backend and affirms•
the requirement to install it for build purposes.

Note that poetry separates the build and development dependencies (only needed
by developers) from the dependencies of the software being packaged.

In this project the actual source code lives in the src/ch24/ subdirectory. Telling the
build chain where the source representing the package can be found requires adding
a further key to the [tool.poetry] table called packages, as shown here:

packages = [
 { include = "ch24", from = "src" },
]

8 | Chapter 24: Packaging Programs and Extensions

mailto:steve@holdenweb.com

The packages key references a list, so you can include multiple packages, although
this simple example includes only one.

Establishing and Managing Virtual Environments
poetry allows you to switch between virtual environments, which it can manage
for you with its env subcommand. Executing the following command, for exam‐
ple, causes poetry to create and populate a Python 3.10 environment which then
becomes the default for poetry commands:

$ poetry env use 3.10
Creating virtualenv ch24-0iMRbWbT-py3.10 in /Users/sholden/Library/
Caches/pypoetry/virtualenvs
Using virtualenv: /Users/sholden/Library/Caches/pypoetry/virtualenvs/
ch24-0iMRbWbT-py3.10

Should you need to add dependencies for your project, use the poetry add pack
age_name command. For dependencies only required during development, add the
-D option:

$ poetry add -D pytest
Using version ^7.1.2 for pytest

Updating dependencies
Resolving dependencies... (1.0s)
Writing lock file

Package operations: 8 installs, 0 updates, 0 removals

 • Installing pyparsing (3.0.9)
 • Installing attrs (22.1.0)
 • Installing iniconfig (1.1.1)
 • Installing packaging (21.3)
 • Installing pluggy (1.0.0)
 • Installing py (1.11.0)
 • Installing tomli (2.0.1)
 • Installing pytest (7.1.2)

These changes immediately affect the current environment. Remove packages with
poetry remove package_name. To test consistency with Python 3.9, you could use
poetry use 3.9 to create another environment; poetry install will then add
known dependencies to the new environment. poetry env list will show you the
existing environments, identifying the currently active one:

(v39) $ poetry env list
ch24-0iMRbWbT-py3.10
ch24-0iMRbWbT-py3.9 (Activated)

poetry | 9

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

poetry May Interact Poorly with an Active Virtual
Environment
When you issue poetry commands with a virtual environ‐
ment already active, especially in complex testing frameworks
like tox, there can be confusion about exactly which version
of which environment is active for commands run from the
command line. Make sure to deactivate any active virtualenv
before using poetry commands.

A very useful command for developers is poetry shell, which starts a subshell
with the current poetry virtualenv already activated. Note the change of Python
interpreter after issuing the command:

$ which python
/usr/bin/python
$ poetry shell
Spawning shell within /Users/sholden/Library/Caches/pypoetry/
virtualenvs/ch24-0iMRbWbT-py3.9
$. /Users/sholden/Library/Caches/pypoetry/virtualenvs/ch24-
0iMRbWbT-py3.9/bin/activate
(ch24-0iMRbWbT-py3.9) $ which python
/Users/sholden/Library/Caches/pypoetry/virtualenvs/ch24-0iMRbWbT-py3.9/
bin/python

Terminating the shell with exit or ^D (^Z on Windows) gets you back to your
original environment. To run a single command with the virtualenv active, use
poetry run command args.

Handling Entry Points in poetry
Identify entry points to poetry in the [tool.poetry.scripts] table in pypro‐
ject.toml. Each key in the table will cause an executable of that name to be installed
in the /bin directory of the virtual environment it’s installed into. Each value is a
string, which should be the name of a module, followed by a colon and the name
of a callable object within that module. You can also add a [tool.poetry.plugins]
table whose subtables associate keys with objects referenced in the same way as the
scripts.

Building Your Project
With at least one virtual environment available, you can now ask poetry to perform
the build backend function with the poetry build command. poetry will install
any necessary dependencies (though our simple package has none) before running
the build:

$ poetry build
Building ch24 (0.1.0)
 - Building sdist
 - Built ch24-0.1.0.tar.gz
 - Building wheel

10 | Chapter 24: Packaging Programs and Extensions

 - Built ch24-0.1.0-py3-none-any.whl
$ tree dist
dist
├── ch24-0.1.0-py3-none-any.whl
└── ch24-0.1.0.tar.gz

By default, poetry builds both a source distribution and a wheel in the project’s dist
subdirectory. Since this is a pure Python package, the wheel contains only metadata
and the necessary source files. Note the suffix to the wheel file, -py3-none-any.whl,
which indicates that it’s a Python 3 package with no API requirements and should
run on any architecture. This is typical for pure packages. Listing the TAR shows
the contents:

$ tar -tzf dist/ch24-0.1.0.tar.gz
ch24-0.1.0/pyproject.toml
ch24-0.1.0/src/ch24/__init__.py
ch24-0.1.0/src/ch24/_version.py
ch24-0.1.0/src/ch24/dotted_dict.py
ch24-0.1.0/src/ch24/object_dict.py
ch24-0.1.0/setup.py
ch24-0.1.0/PKG-INFO

Notice that the source distribution contains a setup.py file; its contents are discussed
further in “setuptools” on page 13. The unzip utility lists the wheel file’s contents:

$ unzip -l dist/ch24-0.1.0-py3-none-any.whl
Archive: dist/ch24-0.1.0-py3-none-any.whl
 Length Date Time Name
--------- ---------- ----- ----
 122 01-01-1980 00:00 ch24/__init__.py
 145 01-01-1980 00:00 ch24/_version.py
 3477 01-01-1980 00:00 ch24/dotted_dict.py
 2403 01-01-1980 00:00 ch24/object_dict.py
 83 01-01-2016 00:00 ch24-0.1.0.dist-info/WHEEL
 496 01-01-2016 00:00 ch24-0.1.0.dist-info/METADATA
 484 01-01-2016 00:00 ch24-0.1.0.dist-info/RECORD
--------- -------
 7210 7 files

Installing Locally
Once poetry has built your distributions, it’s easy to install them in local environ‐
ments, either from the source distribution or the wheel. Note that installing from
source causes pip to create another wheel, which it then installs!

$ poetry run pip install ch24-0.1.0.tar.gz
Processing ./ch24-0.1.0.tar.gz
 Installing build dependencies ... done
 Getting requirements to build wheel ... done
 Preparing metadata (pyproject.toml) ... done
Building wheels for collected packages: ch24
 Building wheel for ch24 (pyproject.toml) ... done

poetry | 11

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

 Created wheel for ch24: filename=ch24-0.1.0-py3-none-any.whl
size=3744 sha256=5ce2c779d68e5c430391cde42ed591a27fc225b29cf70afdf6a29f
2325fa9fbe
 Stored in directory:
/Users/sholden/Library/Caches/pip/wheels/80/ef/fe/465653c2686aa24beae75
39bd8946215d95356c1e6256ee5de
Successfully built ch24
Installing collected packages: ch24
Successfully installed ch24-0.1.0

Installing from the wheel is simpler, however, precisely because the work to create it
has already been done:

(ch24env) $ pip install dist/ch24-0.1.0-py3-none-any.whl
Processing ./dist/ch24-0.1.0-py3-none-any.whl
Installing collected packages: ch24
Successfully installed ch24-0.1.0

Keep a Package’s Name the Same as Its Import Name
Unfortunately, there is no requirement for the project name
in pyproject.toml to be the same as the name of the package
directory. The BeautifulSoup package (covered in Chapter
22), for example, is the cause of some consternation among
developers who, having run pip install BeautifulSoup, are
then perplexed to find that their Python code has to import
bs4. We suggest you make things as simple as possible by
keeping both names the same.

Distributing Your Project with poetry
Because poetry aims to meet as many of the needs of developers as possible, it also
allows you to publish your packages to the PyPI repository. It’s beyond the scope
of this chapter to describe setting up the authentication to provide credentials auto‐
matically, but when provided with the credentials for your account, the command
poetry publish --username user --password pw will push a new version of ch24
to PyPI. Alternatively, you can use the twine package to upload it, as described in
“Registering and Uploading to a Repository” on page 28, later in this chapter.

Once your package is up on PyPI, any Python user on the internet can download
and install it.

12 | Chapter 24: Packaging Programs and Extensions

Other Commands
Some other useful poetry commands are listed in Table 24-1.

Table 24-1. Useful poetry commands

cache Manages caching of downloaded resources

config Lets you create and edit poetry configuration item values

export Exports the lock file (specifying dependencies and their versions) in a variety of formats

lock Creates a lock file from the currently installed dependencies

search Searches for packages on remote repositories

version Manages the version of the distribution

setuptools
setuptools is a rich and flexible set of tools for packaging Python programs and
extensions for distribution; while it relies on the standard library’s distutils, it
offers more flexibility and gives insurance against the forthcoming retirement of
that package. It has been the primary mechanism for packaging and distribution for
the past decade, and is currently migrating toward the standards of PEP 517 and
PEP 518. A full description of driving setuptools using pyproject.toml can be found
in the documentation, and this is the preferred way to distribute new projects (or
update older ones). setuptools is automatically installed as a part of any virtual
environment created with the python -m venv path command.

This Section Describes Legacy Methods
While the process described in the remainder of this section
may be useful in maintaining legacy projects, we don’t recom‐
mend that you use this approach for new projects. You will
find a more modern take on using setuptools together with
pyproject.toml in the user guide (see “Building and Distribut‐
ing Packages with Setuptools”).

The Source Tree and Its Root
A source tree is the set of files to package into a single archive file for distribution
purposes, and may include metadata as well as program sources. It can contain
Python packages and/or other Python modules (as covered in Chapter 7), as well as,
optionally, Python scripts, C-coded (and other) extensions, data files, and auxiliary
files with metadata.

You usually place all the files of the source tree in a directory known as the source
root, and in subdirectories of the source root. Mostly, you can arrange the subtree of
files and directories to suit your needs. However, as covered in “Packages” in Chap‐
ter 7, a Python package must reside in its own directory (unless you are creating
namespace packages, also discussed in Chapter 7), and each package’s directory must

setuptools | 13

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/index.html
https://setuptools.pypa.io/en/latest/userguide/index.html

contain a file named __init__.py (and subdirectories with __init__.py files for the
package’s subpackages, if any) as well as other modules that belong to that package.

setuptools expects each distribution to include a setup.py script, and optionally
a README file (preferably in reStructuredText format); it may also contain a
requirements.txt, a MANIFEST.in, and a setup.cfg. These files are all covered in the
following sections.

Testing Your Package During Development
If you wish to test your package while developing it, you can
install it locally with pip install -e project_source. The
-e flag stands for “editable” (aka development mode), because
editing the source will affect the virtual environment in which
the package is installed. The project_source is frequently a
local project directory, or a local or remote source repository
reference. Complete details are provided in the online docs.

The setup.py Script
The distribution root directory must contain a Python script, by convention named
setup.py. The setup.py script can, in theory, contain arbitrary Python code. However,
in practice it usually boils down to some variation of this:

from setuptools import setup, find_packages
Optional configuration steps
setup(<many named arguments can go here>)
Optional post-install steps

You should also import Extension if your setup.py deals with a non-pure
distribution.

The call to setup analyzes the command line used to run the setup.py script, which
will be of the form:

python setup.py [options] command [options]

The available commands can be found using the --help-commands command-line
option:

$ python /tmp/setup.py --help-commands
Standard commands:
 build build everything needed to install
 build_py "build" pure Python modules (copy to build
 directory)
 build_ext build C/C++ and Cython extensions (compile/link to
 build directory)
 build_clib build C/C++ libraries used by Python extensions
 build_scripts "build" scripts (copy and fixup #! line)
 clean clean up temporary files from 'build' command
 install install everything from build directory
 install_lib install all Python modules (extensions and pure

14 | Chapter 24: Packaging Programs and Extensions

https://docutils.sourceforge.io/rst.html
https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/?highlight=development%20mode#working-in-development-mode

 Python)
 install_headers install C/C++ header files
 install_scripts install scripts (Python or otherwise)
 install_data install data files
 sdist create a source distribution (tarball, zip file,
 etc.)
 register register the distribution with the Python package
 index
 bdist create a built (binary) distribution
 bdist_dumb create a "dumb" built distribution
 bdist_rpm create an RPM distribution
 bdist_wininst create an executable installer for MS Windows
 check perform some checks on the package
 upload upload binary package to PyPI

Extra commands:
 alias define a shortcut to invoke one or more commands
 bdist_egg create an "egg" distribution
 develop install package in 'development mode'
 dist_info create a .dist-info directory
 easy_install Find/get/install Python packages
 egg_info create a distribution's .egg-info directory
 install_egg_info Install an .egg-info directory for the package
 rotate delete older distributions, keeping N newest files
 saveopts save supplied options to setup.cfg or other config
 file
 setopt set an option in setup.cfg or another config file
 test run unit tests after in-place build (deprecated)
 upload_docs Upload documentation to sites other than PyPi such
 as devpi

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

Mostly we’ll be considering the installation case (python setup.py install ...).

Configuring the setup
You can provide configuration parameters to setup in three different ways:

• The simplest option is to provide named arguments to your setup.py’s call to•
setuptools.setup. The examples we use here show the configuration parame‐
ters as they would appear when provided as setup arguments.

• You can offer your users better installation flexibility by instead providing a•
setup.cfg file that provides the same information—this separation of function
from configuration data makes it simpler for users to edit the necessary data

setuptools | 15

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

7 Options for specific setup commands can also be included. The --test-suite=NAME command-
line option to the test command would appear as test_suite_name = NAME in setup.py’s [test]
section.

for custom installations.7 More modern tools will also look in pyproject.toml, to
which configuration data should, in the long term, migrate.

• Finally, you can add configuration options to the command line you use to•
execute the setup function.

It is perfectly acceptable to include other logic in your setup.py before the call to
setup. For example, a long_description string may be populated from its own
separate file, as in:

with open('./README.rst') as f:
 long_description = f.read()

Configuration parameters fall primarily into three groups: metadata about the dis‐
tribution, information about which files are in the distribution, and information
about dependencies. An example of modern practice is the setup.py for the Django
web framework, shown in Example 24-3.

Example 24-3. Django framework setup.py file

import os
import site
import sys
from distutils.sysconfig import get_python_lib

from setuptools import setup

Allow editable install into user site directory.
See https://github.com/pypa/pip/issues/7953.
site.ENABLE_USER_SITE = "--user" in sys.argv[1:]

Warn if we are installing over top of an existing installation. This can
cause issues where files that were deleted from a more recent Django are
still present in site-packages. See #18115.
overlay_warning = False
if "install" in sys.argv:
 lib_paths = [get_python_lib()]
 if lib_paths[0].startswith("/usr/lib/"):
 # We have to try also with an explicit prefix
 # of /usr/local in order to
 # catch Debian's custom user site-packages directory.
 lib_paths.append(get_python_lib(prefix="/usr/local"))
 for lib_path in lib_paths:
 existing_path = os.path.abspath(os.path.join(lib_path, "django"))
 if os.path.exists(existing_path):
We note the need for the warning here,

16 | Chapter 24: Packaging Programs and Extensions

but present it after the
command is run, so it's more likely to be seen.
 overlay_warning = True
 break

setup()

if overlay_warning:
 sys.stderr.write(
 """
========
WARNING!
========
You have just installed Django over top of an existing
installation, without removing it first. Because of this,
your install may now include extraneous files from a
previous version that have since been removed from
Django. This is known to cause a variety of problems. You
should manually remove the
%(existing_path)s
directory and re-install Django.
"""
 % {"existing_path": existing_path}
)

Most of the logic is concerned with detecting the situation where someone installs
Django on top of an existing installation. The actual functionality is provided by a
simple call to setup, with no arguments provided. The heavy lifting of configuration
is performed by the setup.cfg file, shown in Example 24-4 (though those settings
could still be overridden by command-line arguments).

Example 24-4. Django framework setup.cfg file

[metadata]
name = Django
version = attr: django.__version__
url = https://www.djangoproject.com/
author = Django Software Foundation
author_email = foundation@djangoproject.com
description = A high-level Python web framework that encourages rapid
development and clean, pragmatic design.
long_description = file: README.rst
license = BSD-3-Clause
classifiers =
 Development Status :: 2 - Pre-Alpha
 Environment :: Web Environment
 Framework :: Django
 Intended Audience :: Developers
 License :: OSI Approved :: BSD License
 Operating System :: OS Independent
 Programming Language :: Python

setuptools | 17

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

 Programming Language :: Python :: 3
 Programming Language :: Python :: 3 :: Only
 Programming Language :: Python :: 3.8
 Programming Language :: Python :: 3.9
 Programming Language :: Python :: 3.10
 Topic :: Internet :: WWW/HTTP
 Topic :: Internet :: WWW/HTTP :: Dynamic Content
 Topic :: Internet :: WWW/HTTP :: WSGI
 Topic :: Software Development :: Libraries :: Application Frameworks
 Topic :: Software Development :: Libraries :: Python Modules
project_urls =
 Documentation = https://docs.djangoproject.com/
 Release notes = https://docs.djangoproject.com/en/stable/releases/
 Funding = https://www.djangoproject.com/fundraising/
 Source = https://github.com/django/django
 Tracker = https://code.djangoproject.com/
[options]
python_requires = >=3.8
packages = find:
include_package_data = true
zip_safe = false
install_requires =
 asgiref >= 3.5.2
 backports.zoneinfo; python_version<"3.9"
 sqlparse >= 0.2.2
 tzdata; sys_platform == 'win32'
[options.entry_points]
console_scripts =
 django-admin = django.core.management:execute_from_command_line
[options.extras_require]
argon2 = argon2-cffi >= 19.1.0
bcrypt = bcrypt
[bdist_rpm]
doc_files = docs extras AUTHORS INSTALL LICENSE README.rst
install_script = scripts/rpm-install.sh
[flake8]
exclude = build,.git,.tox,./tests/.env
extend-ignore = E203
max-line-length = 88
per-file-ignores =
 django/core/cache/backends/filebased.py:W601
 django/core/cache/backends/base.py:W601
 django/core/cache/backends/redis.py:W601
 tests/cache/tests.py:W601
[isort]
profile = black
default_section = THIRDPARTY
known_first_party = django

18 | Chapter 24: Packaging Programs and Extensions

You will observe that the django-admin command is specified as a console entry
point; it runs the execute_from_command_line function from django.core.man

agement. The project also comes with a pyproject.toml file (shown in Example 24-5)
that specifies setuptools as the build backend. As mentioned previously, in the
long term you should move all configuration data to pyproject.toml.

Example 24-5. Django framework pyproject.toml file

[build-system]
requires = ['setuptools>=40.8.0']
build-backend = 'setuptools.build_meta'
[tool.black]
target-version = ['py38']
force-exclude = 'tests/test_runner_apps/tagged/tests_syntax_error.py'

For a fuller appreciation of the significant work that goes into releasing a new
version of a large Python project, you may find the Django project’s release docu‐
mentation of interest.

Metadata about the distribution
It’s important to provide metadata about the distribution by supplying some of the
configuration parameters shown in Table 24-2. The value you associate with each
argument name you supply is a string, intended mostly to be human-readable; the
specifications about the string’s format are advisory. The explanations and recom‐
mendations about the metadata fields in the following table are also nonnormative
and correspond only to common, not universal, conventions. References to “this
distribution” in these descriptions can be taken to refer to the material included
in the distribution rather than to the packaging of the distribution. The following
are the most commonly used metadata arguments; the PyPA’s “Core Metadata
Specification” gives full details.

Table 24-2. Common metadata arguments

author The name(s) of the author(s) of material included in this distribution. Always provide
this information: authors deserve credit for their work.

author_email The email address(es) of the author(s) named in the argument author. You should
usually provide this information.

classifiers A list of Trove strings to classify your package; each string must be one of those
listed in “Trove Classifiers” on PyPI.

description A concise description of this distribution, preferably fitting within one line of 80
characters or less.

keywords A list of strings that somebody looking for the functionality provided by this
distribution would be likely to search for. Provide this information as a comma-
separated list of keywords, so that users can find your package on PyPI or using
other search engines.

setuptools | 19

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://docs.djangoproject.com/en/dev/internals/howto-release-django/
https://docs.djangoproject.com/en/dev/internals/howto-release-django/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://packaging.python.org/en/latest/specifications/core-metadata/
https://pypi.python.org/pypi?%3Aaction=list_classifiers

license The licensing terms of this distribution, in a concise form that typically points to the
full license text, which is included as another distributed file or available at a certain
URL.

long_description A long description of this distribution, typically as provided in the README file
(which is preferably in .rst format).

maintainer The name(s) of the current maintainer(s) of this distribution. Provide this
information when the maintainer is different from the author.

maintainer_email The email address(es) of the maintainer(s) named in the argument maintainer.
Provide this information only when you supply the maintainer argument and
the maintainer is willing to receive email about this work.

name The name of this distribution as a valid Python identifier (see PEP 426 for exact
criteria). If you plan to upload your project to PyPI, this name must not conflict with
any other project already in the PyPI database.

platforms A list of platforms on which this distribution is known to work. Provide this
information when you have reason to believe the distribution may not work
everywhere. This information should be reasonably concise, so the field often
references information at a URL or in another distributed file.

url A URL at which more information can be found about this distribution, or None if no
such URL exists.

version The version of this distribution, normally structured as major.minor or even
more finely. See PEP 440 for recommended versioning schemes.

Distribution contents
A distribution can contain a mix of Python source files, C-coded extensions, and
data files. setup accepts optional named arguments that detail which files to put
in the distribution. Whenever you specify file paths, the paths must be relative to
the distribution root directory and use / as the path separator. setuptools adapts
the location and separator appropriately when it installs the distribution. Wheels,
in particular, do not support absolute paths: all paths are relative to the top-level
directory of your package.

Distinguish Between Package and Filesystem Paths
The configuration parameters packages and py_modules do
not list file paths, but rather Python packages and modules,
respectively. Therefore, in the values of these named argu‐
ments, don’t use path separators or file extensions. If you list
subpackage names in packages, use Python module syntax
instead (i.e., top_package.sub_package).

Python source files
By default, setup looks for Python modules (listed in the value of the configuration
parameter py_modules) in the distribution root directory, and for Python packages

20 | Chapter 24: Packaging Programs and Extensions

https://www.python.org/dev/peps/pep-0426/%23name
https://www.python.org/dev/peps/pep-0440/

(listed in the value of the configuration parameter packages) as subdirectories of
the distribution root directory.

Table 24-3 lists the setup configuration parameters you will use most frequently to
detail which Python source files are part of the distribution.

Table 24-3. Common setup configuration parameters

entry_points The value should be a dict holding one or more groups; each group consists of a list of
name=value strings, where name is an identifier and value is a reference to a Python
module or function. These references take the form of the (possibly dotted) name of a
module or package, optionally followed by a colon and a (possibly dotted) reference to
a function within it. The most common use of entry_points is to create executable
scripts with the console_scripts and gui_scripts groups, but see also “Creating
and Discovering Plugins” for further information on its use.

packages The value should be a list of packages, which you can provide yourself or generate with
a call to the find_packages function from setuptools, which can automatically
locate and include packages and subpackages in your distribution root directory.
For each package name string p in the list, setup expects to find a subdirectory p in
the source root directory and includes in the distribution the file p/ __init__.py, which
must be present, as well as any other file p/*.py (i.e., all the modules of package p).
setup does not search for subpackages of p: unless you use find_packages, you
must explicitly list all subpackages, as well as top-level packages, in the value of the
named argument packages. We recommend using find_packages to avoid having
to update packages (and potentially miss a package) as your distribution grows.

py_modules The value should be a list of module name strings. For each module name string m in the
list, setup expects to find the file m.py in the distribution root directory and includes
m.py in the distribution. Use py_modules instead of find_packages when you have
a very simple package with only a few modules and no subdirectories.

Handling entry points in setup
The entry_points parameter tells the installer which plug-ins, services, or scripts
to register for the application, and instructs it to create the appropriate platform-
specific executables in the environment’s /bin directory. The primary entry_points
group arguments used are console_scripts (which replaces the deprecated
scripts) and gui_scripts. Other plug-ins and services (e.g., parsers) are also sup‐
ported, but we do not cover them further in this book; see the “Python Packaging
User Guide” for more detailed information.

When pip installs a package, it registers each entry point name and creates an
appropriate executable (including an .exe launcher on Windows), which you can
then run by simply entering name at the terminal prompt, rather than, for example,
having to type python -m mymodule.

Scripts are generally Python source files that are meant to be run as main programs
(see “The Main Program” in Chapter 7), usually from the command line. Each
script file should have as its first line a shebang line—that is, a line starting with #!

setuptools | 21

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/
https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/
https://packaging.python.org
https://packaging.python.org

and containing the substring python. In addition, each script should end with the
following code block:

if __name_ == '__main__' :
 mainfunc()

To have pip install your script as an executable, list the script in entry_points
under console_scripts (or gui_scripts, as appropriate). In addition to, or
instead of, the main function of your script, you can use entry_points to regis‐
ter other functions as script interfaces. Here’s what entry_points with both con
sole_scripts and gui_scripts defined might look like:

entry_points={
 'console_scripts': ['example=example:mainfunc',
 'otherfunc=example:anotherfunc',
],
 'gui_scripts': ['mygui=mygui.gui_main:run',
],
 },

After installation, just type example at the terminal prompt to execute mainfunc in
the module example. If you type otherfunc, the system executes anotherfunc, also
in the module example. Installing in the (usually virtual) environment means the
environment’s /bin subdirectory will contain an item for each entry point, thereby
guaranteeing the entry point(s) will be available whenever the environment is active.

Including packages and modules
Your code may be complex enough that it needs to be split into submodules and
even subpackages. You can use the packages and py_modules arguments to setup
for this purpose. packages can either be find_packages() or a list of package
names, each corresponding to a subdirectory in the project root, and py_modules
should be a list of modules, whose Python files should again appear in the package
root directory:

packages=find_packages(),
modules=['mod_one', 'mod_two'],

For the latest advice on package and module discovery, see “Package Discovery and
Namespace Packages” in the setuptools documentation.

Data and other files
To put files of any kind in the distribution, supply the named arguments listed in
Table 24-4. In most cases, you’ll want to use package_data to list your data files.
The named argument data_files is used for listing files that you want to install to
directories outside your package; however, we do not recommend you use it, due to
complicated and inconsistent behavior, as described here.

22 | Chapter 24: Packaging Programs and Extensions

https://setuptools.pypa.io/en/latest/userguide/package_discovery.html
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html

Table 24-4. Named arguments for adding files to setup

data_files data_files=[(target_directory, list_of_files), ...]

The value of this argument is a list of pairs. Each pair’s first item is a string that names
a target directory (i.e., a directory where setuptools places data files when installing
the distribution); the second item is the list of file path strings for files to put in the target
directory.
At installation time, installing from a wheel places each target directory as a subdirectory
of Python’s sys.prefix for a pure distribution, or of Python’s sys.exec_prefix
for a non-pure distribution. Installing from the source distribution with pip uses
setuptools to place target directories relative to site_packages, but installing without
pip and with distutils has the same behavior as with a wheel. Because of such
inconsistencies, we do not recommend you use data_files.

package_data package_data={k: list_of_globs, ...}
The value of this argument is a dict. Each key is a string that names a package
in which to find the data files; the corresponding value is a list of glob patterns for
files to include. The patterns may include subdirectories (using relative paths separated
by a forward slash, /, even on Windows). An empty package string, '', recursively
includes all files in any subdirectory that matches the pattern—for example, '':
['*.txt'] includes all .txt files anywhere in the top-level directory or subdirectories. At
installation time, setuptools places each file in appropriate subdirectories relative to
site_packages.

C-coded extensions
To put C-coded extensions in the distribution, supply the following named
argument:

ext_modules ext_modules=[<list of instances of class Extension>]
All the details about each extension are supplied as arguments when instantiating the
setuptools.Extension class. Extension’s constructor accepts two mandatory
arguments and many optional named arguments. The simplest possible example looks
something like this:

ext_modules=[Extension('x',sources=['x.c'])]

The Extension class’s constructor has the signature:

Extension class Extension(name, sources, **kwds)

name is the module name string for the C-coded extension. name may include dots to indicate
that the extension module resides within a package. sources is the list of C source files that
must be compiled and linked in order to build the extension. Each item of sources is a string
that gives a source file’s path relative to the distribution root directory, complete with the file
extension .c. kwds lets you pass other optional named arguments to Extension, as covered
later in this section.

The Extension class also supports additional file extensions besides .c, indicating
other languages you may use to code Python extensions. On platforms having a

setuptools | 23

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

C++ compiler, the file extension .cpp indicates C++ source files. Other file exten‐
sions that may be supported, depending on the platform and on various add-ons
to setuptools, include .f for Fortran, .i for SWIG, and .pyx for Cython files. See
“Extending Python Without Python’s C API” in Chapter 25 for information about
using different languages to extend Python.

In most cases, your extension needs no further information besides the mandatory
arguments name and sources. Note that you need to list any .h headers in your
MANIFEST.in file. setuptools does all that is needed to make the Python headers
directory and the Python library available for your extension’s compilation and
linking, and provides whatever compiler or linker flags or options are needed to
build extensions on a given platform.

When additional information is required to compile and link your extension cor‐
rectly, you can supply such information via the named arguments of the class Exten
sion. However, when you plan to distribute your extensions to other platforms,
you should examine whether you really need to provide build information via these
arguments; it is sometimes possible to avoid this by careful coding at the C level.
Using these arguments may potentially interfere with the cross-platform portability
of your distribution. In particular, whenever you specify file or directory paths as
the values of such arguments, the paths should be relative to the distribution root
directory.

Table 24-5 lists the named arguments that you may pass when calling Extension.

Table 24-5. Named arguments of the Extension class

define_macros define_macros=[(macro_name,macro_value) ...]

Each of the items macro_name and macro_value is a string, respectively the
name and value of a C preprocessor macro definition, equivalent in effect to the C
preprocessor directive #define macro_name macro_value.
macro_value can also be None, to get the same effect as the C preprocessor
directive #define macro_name.

extra_compile_

args

extra_compile_arg=[<list of compile_arg strings>]

Each of the strings listed as the value of extra_compile_args is placed among
the command-line arguments for each invocation of the C compiler.

extra_link_args extra_link_args=[<list of link_arg strings>]

Each of the strings listed as the value of extra_link_args is placed among the
command-line arguments for the linker.

extra_objects extra_objects=[<list of object_name strings>]

Each of the strings listed as the value of extra_objects names an object file to
link in. Do not specify the file extension as part of the object name: distutils
adds the platform-appropriate file extension (.o on Unix-like platforms, .obj on
Windows) to help you preserve cross-platform portability.

include_dirs include_dirs=[<list of directory_path strings>]

Each of the strings listed as the value of include_dirs identifies a directory to
supply to the compiler as one where header files are found.

24 | Chapter 24: Packaging Programs and Extensions

https://github.com/pynutshell/pynut4/blob/main/chapters/25%20Extending%20and%20Embedding%20Classic%20Python.pdf

libraries libraries=[<list of library_name strings>]

Each of the strings listed as the value of libraries names a library to link in. Do
not specify the file extension or any prefix as part of the library name: distutils,
in cooperation with the linker, adds the platform-appropriate file extension and
prefix (.a and the prefix lib on Unix-like platforms, .lib on Windows) to help you
preserve cross-platform portability.

library_dirs library_dirs=[<list of directory_path strings>]

Each of the strings listed as the value of library_dirs identifies a directory to
supply to the linker as one where library files are found.

runtime_library_

dirs

runtime_library_dirs=[<list of directory_path strings>]

Each of the strings listed as the value of runtime_library_dirs identifies a
directory where dynamically loaded libraries are found at runtime.

undef_macros undef_macros=[<list of macro_name strings>]

Each of the strings macro_name listed as the value of undef_macros is the
name of a C preprocessor macro definition, equivalent in effect to the C preprocessor
directive #undef macro_name.

Dependencies and requirements
You may optionally list dependencies with named arguments in setup.py, as
described in Table 24-6, or in a requirements file (described in the following
section).

Table 24-6. Named arguments for listing dependencies in setup.py

extras_require extras_require={'extra_name':['pkgname'], ...}

Takes a dict of recommended additional dependencies: each key
'extra_name' has as its value a list of packages that should be installed
when the extra is selected at install time. pip does not automatically install these
dependencies; the user opts into installing extra rec at installation time of a main
package mpk with pip install mpk[rec].

install_requires install_requires=['pkg',['pkg2>=n.n']]

Takes a list of package names as strings, with specific version requirements n.n
optionally provided (see PEP 440 for details on how version specifiers are handled).
Provide the broadest version requirements possible for your program. Use this
named argument to supply dependencies that are the minimum necessary for your
program to run. pip automatically calls pip install pkg on each argument
pkg to install the dependency.

setuptools | 25

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://www.python.org/dev/peps/pep-0440/%23version-specifiers

The requirements.txt File
You may optionally provide a requirements.txt file containing pip install speci‐
fications, one per line. This is useful to re-create a particular environment for
installation, or to force the use of certain versions of dependencies.

When the user enters the following at a command prompt, pip installs all items
listed in the file; however, installation is not guaranteed to be in any particular
order:

$ pip install -r requirements.txt

install_requires Versus extras_require Versus
requirements.txt?
pip only automatically discovers and installs those dependen‐
cies it finds listed in install_requires. extras_require
entries must be specified at installation time (as described
in the previous section), unless they are independently
required by another package (e.g., when your package is one
of a number being installed together). Packages in require‐
ments.txt must be manually installed by the user. For fur‐
ther information and detailed usage instructions, see the pip
documentation.

The MANIFEST.in File
When you package your source distribution, setuptools by default inserts the
following files in the distribution:

• All Python (.py) and C source files explicitly listed in packages or found by•
find_packages in setup.py

• Files listed in package_data and data_files in setup.py•

• Scripts or plug-ins defined in entry_points in setup.py•
• Test files located at test/test*.py under the distribution root directory, unless•

excluded in find_packages
• The README, README.md, README.rst, or README.txt files (if any), as•

well as setup.cfg (if present) and setup.py
To add other files in the source distribution, place in its root directory a manifest
template file named MANIFEST.in, whose lines are rules, applied sequentially, about
files to add (include) or subtract (prune) from the list of files to place in the
distribution. See the distutils documentation for more details. If you have any
C extensions in your project (listed in setup.py named argument ext_modules), the
path to any .h header files must also be listed in MANIFEST.in to ensure the headers
are included, with a line like pkg_name/include, providing a relative path to the
directory containing the headers.

26 | Chapter 24: Packaging Programs and Extensions

https://pip.pypa.io/en/latest/user_guide/#requirements-files
https://pip.pypa.io/en/latest/user_guide/#requirements-files
https://docs.python.org/3/distutils/sourcedist.html#specifying-the-files-to-distribute

8 NumPy, for example, incorporates code written in FORTRAN.

Distributing Your Package
Once you have your setup.py (and other files) in order, to distribute your package:

1. Create the distribution as a wheel or other archive format.1.
2. Register your package, if necessary, to a repository.2.
3. Upload your package to a repository.3.

Create the Distribution
In the past, a packaged source distribution (sdist) made with python setup.py
sdist was the most useful file you could produce with distutils. You’ll still
want to create an sdist when you are distributing packages with C extensions
for flavors of Linux; and when you absolutely require absolute paths (rather than
relative paths) for installation of certain files (listed in the data_files argument
to setup.py), you need to use an sdist. (See the discussion on data_files in the
“Python Packaging User Guide.”) But when you are packaging pure Python, or
platform-dependent C extensions for macOS or Windows, you can make life easier
for most users by also creating built distributions as wheels.

Building wheels
For a non-pure distribution, making built forms available may be more than just
an issue of convenience. An extension distribution, by definition, includes code that
is not pure Python—generally, C code, though other languages can be integrated.8
Unless you supply a built form, users need to have the appropriate C compiler
installed in order to build and install your distribution. Installing a source distri‐
bution may be difficult for end users who are not experienced programmers. We
therefore recommend you provide both an sdist, in .tar.gz format, and a wheel
(or several, for non-pure packages). For that, you need to have the necessary C
compiler installed. Non-pure wheels work only on other computers with the same
platform (e.g., macOS, Windows) and architecture (e.g., 32-bit, 64-bit) they were
built for.

Creating wheels
To create a wheel, in many cases, all you need to run is a single command. For
a pure (Python-only) distribution, just type the following from your distribution’s
top-level directory:

$ python setup.py bdist_wheel

This creates a wheel that can be installed on any platform. Non-pure wheels can
be created for macOS or for Windows, but only for the platform being used to

Distributing Your Package | 27

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://packaging.python.org/distributing

create them. Running python setup.py bdist_wheel automatically detects the
extension(s) and creates the appropriate wheel. One benefit of creating a wheel is
that your users are able to pip install the package, regardless of whether they
have a C compiler themselves, as long as they’re running on the same platform as
you used to create the wheel.

Non-Pure Linux Wheels
Unfortunately, distributing non-pure Linux wheels isn’t any‐
where near as simple as distributing pure ones, due to varia‐
tions among Linux distributions, as described in PEP 600.
PyPI does not accept non-pure Linux wheels unless they are
tagged manylinux. The constraints of the systems used to cre‐
ate these cross-distribution wheels are described in the PEP;
check out the manylinux README for the gory details.

Once you run python setup.py bdist_wheel, you will have a wheel named some‐
thing like mypkg-0.1-py2.py3-none-any.whl in a (new, if you’ve run setup.py for
the first time) directory called dist/. For more information on wheel naming and
tagging conventions, see the now-venerable PEP 425.

Creating an sdist
To create a source distribution for your project, type the following in the top level of
your package directory:

$ python setup.py sdist

This creates a .tar.gz file (on Windows, a .zip, by default; add --formats=gztar to
make it produce the .tar.gz archive format instead). You may then upload the .tar.gz
file to PyPI, or otherwise distribute it. Your users will have to download it, unpack
it, and install it with, typically, python setup.py install. More information on
source distributions is available in the online docs.

PyPI Prefers .tar.gz Files
Do not attempt to upload both a .zip and a .tar.gz file to PyPI;
you’ll get an error. Instead, stick with .tar.gz for most use
cases.

Registering and Uploading to a Repository
Once you’ve created a wheel or an sdist, you may choose to upload it to a repository
for easy distribution to your users. You can upload to a local repository, such as a
company’s private repository, or to a public repository such as PyPI. In the past,
setup.py was used to build and immediately upload; however, due to issues with
security, this is no longer recommended. Instead, you should use a third-party
module such as twine (or flit for extremely simple packages, as covered in the

28 | Chapter 24: Packaging Programs and Extensions

https://peps.python.org/pep-0600
https://github.com/pypa/manylinux/
https://www.python.org/dev/peps/pep-0425
https://docs.python.org/3.5/distutils/sourcedist.html

flit docs). There are plans to eventually merge twine into pip: check the “Python
Packaging User Guide” for updated information.

Using twine is fairly straightforward. Run pip install twine to download it.
You’ll need to create a ~/.pypirc file (which provides repository information), and
then it’s a simple command to register or upload your package.

The ~/.pypirc file
twine recommends that you have a ~/.pypirc file (that is, a file named .pypirc,
residing in your home directory) that lists information about the repositories you
want to upload to, including your username and password. Since .pypirc is typically
stored in cleartext, you should set the file’s permissions to 600 (on Unix-like sys‐
tems); use a tool such as keyring, set environment variables, or omit the password
so you’re prompted for it each time you run twine. The ~/.pypirc file should look
something like this:

[distutils]
index-servers=
 testpypi
 pypi
 myrepo
[testpypi]
repository=https://testpypi.python.org/pypi
username=your_username
password=your_password

[pypi]
repository=https://pypi.python.org/pypi
username=your_username
password=your_password

[myrepo]
repository=https://otherurl/myrepo
username=your_username
password=your_password

Registering and uploading to PyPI
If you’ve never used PyPI, first create a user account with your desired username
and password, online at PyPI.) You should also create a TestPyPi user account to
practice uploading packages to a temporary repository before uploading them to
the public repository.

Registering your package before upload is not supported on PyPI. If you need to
register on another repository, follow that repository’s instructions.

Upload your package with the following command, issued from the root directory
of your project (where the dist/ subdirectory should be):

$ twine upload dist/*

Distributing Your Package | 29

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

https://pypi.python.org/pypi/flit
https://packaging.python.org
https://packaging.python.org
https://pypi.org/project/keyring/
https://pypi.python.org/pypi
https://testpypi.python.org/pypi

twine finds the latest version of your distribution and uploads it to the repo
specified in your .pypirc file (alternatively, you may provide the repository URL
on the command line with the flag --repository-url). At this point, your users
will be able to use python -m pip install yourpkg --user (or just python -m
pip install in an active virtual environment—it’s wiser to avoid a non-venv pip
install, which affects the whole Python installation for all users and may require
privileges the average user doesn’t have) to install your package. Another acceptable
variant is to mention the virtual environment explicitly as a command-line argu‐
ment: python -m pip install yourpkg --user venv. (To list packages installed
in the currently active virtual env or globally, use python -m pip list -l).

The PyPA continues to improve Python packaging and distribution. Please join in
the effort by contributing to the codebase or documentation, posting bug reports, or
joining in the discussions on packaging!

zipapp: Cheap and Cheerful Distribution
Python’s ability to import modules from ZIP files has been deployed to great advan‐
tage in the zipapp module. This interesting and relatively little-known module
lets you create a single file containing all the necessary pure Python code for an
application that can then be directly run by the Python interpreter on the same or
another computer.

This technique has several limitations, the most important of which is the inability
to support compiled languages. For users who can live with those limitations,
however, zipapp offers a very convenient mechanism for less formal distribution of
Python programs.

zipapp can be driven from the command line using the python -m zipapp com‐
mand. For a package myapp in a src/myapp directory, the command:

$ python -m zipapp src/myapp -m "myapp:main"

will create a myapp.pyz file containing the application’s code. You can then run this
file with:

$ python myapp.pyz

The module also offers an API that lets you create applications programmatically
(the systems that run your .pyz file must already have a compatible Python inter‐
preter installed for this to work). If your needs are simple enough to be satisfied by
zipapp, you may well find that you don’t need anything else.

Accessing Data Included with Your Code
Sometimes it’s helpful to be able to distribute data that your code needs—anything
from default configuration files to full-scale relational databases—along with your
application or library. The techniques described in “The MANIFEST.in File” on
page 26 and “Data and other files” on page 22 normally suffice to include your

30 | Chapter 24: Packaging Programs and Extensions

https://www.pypa.io/en/latest/help/
https://docs.python.org/3/library/zipapp.html

data as a part of the delivered artifact, but other mechanisms may be available
depending on your build backend. The remaining question is how to access such
data at runtime.

In the past, many developers used distutils.pkg_resources to handle this task, or
relied on computing the filestore path of the library and generating filestore paths
relative to that. More recently, a far more elegant solution has emerged in the form
of the importlib.resources subpackage. By using Python’s import machinery, the
library efficiently locates data installed as a part of the installed package’s home
directory, providing paths to imported resources that you can modify yourself. Not
only that, but because the library’s interface uses Python’s import mechanism, you
can read data artifacts distributed as part of packages in compressed ZIP files.

Some of the more significant functions in the module are listed in Table 24-7.
Wherever a package is required, you can use either a module object (which should
be an imported package) or a string containing the dotted name of an importable
package, which will be imported. Note particularly that resource names cannot
contain any / path separators.

Table 24-7. Functions of the importlib.resources module

as_file as_file(traversable)

3.9+ traversable is a traversable object representing a file, as returned by a call to
importlib.resource.files, for example. Returns a context manager (for use in a with
statement) that provides a pathlib.Path object. Use when you need an actual file rather than
an importlib.abc.Traversable interface.

files t = files(package)

3.9+ files takes either a package or a string naming an importable package as an argument
and returns an object that implements the importlib.abc.Traversable interface, which
is a subset of that for pathlib.Path (see “The pathlib module” in Chapter 11).a

For prior versions, the files method and other features are available as a backport by
installing the importlib-resources package from PyPI, imported in your Python code as
import_resources.

We’ll assume for this example that when your package is installed, it appears some‐
where in your filesystem with the directory tree shown here:

.../site-packages/ch24
├── __init__.py
├── _version.py
├── config.toml
├── data
│ └── myfile.dat
│ └── zipfile.zip
├── subpackage
│ └── __init__.py
│ └── data_file.dat

Accessing Data Included with Your Code | 31

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

a

https://setuptools.pypa.io/en/latest/pkg_resources.html
https://docs.python.org/3.11/library/importlib.resources.html
https://docs.python.org/3/library/importlib.html#importlib.abc.Traversable

9 Beware here: joinpath implements no protections against directory traversal errors, which can
unintentionally expose unanticipated parts of the filesystem.

├── dotted_dict.py
├── object_dict.py

You can use path computations to work out the addresses of any file in your package
and traverse its directory structure as necessary, allowing access to resources not
inside subpackages:

>>> from importlib.resources import files, contents
>>> files('ch24')

PosixPath('.../site_packages/ch24') # Shortened for publication

>>> with (files('ch24') / 'data' / 'myfile.dat').open() as f:
... f.read()
...

'The quick brown fox jumps over the lazy dog.\n'

Note that the contents function does not recurse into subpackages or
subdirectories:

>>> list(contents("ch24"))

['_version.py', '__init__.py', '__pycache__', 'object_dict.py',
'dotted_dict.py', 'subpackage', 'config.toml', 'data']

>>> list(contents("ch24.subpackage"))

['__init__.py', 'data_file.dat', '__pycache__']

Given a path object such as that returned by files, you can use its joinpath
method, or the concatenation operator (/), to construct a path for objects under‐
neath it in the directory tree.9 This technique will fail, however, if the module is
imported from a ZIP file because the objects therein are not filestore objects. You
can access them as files, should you need to, using the as_file function from
importlib.resources, which takes a path object and returns a context manager
that also provides the pathlib.Path object.

When the context is activated, the function will extract the indicated object from
the ZIP file and copy it temporarily into the filestore, removing the file when the
context is destroyed. Suppose a ZIP file at /tmp/zipper.zip has the contents shown in
the following listing:

$ unzip -l zipper.zip
Archive: zipper.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 10-20-2022 09:23 zipper/
 54 10-20-2022 09:23 zipper/module.py
 0 10-20-2022 09:24 zipper/package/

32 | Chapter 24: Packaging Programs and Extensions

 65 10-20-2022 09:24 zipper/package/__init__.py
 0 10-20-2022 12:16 zipper/package/data/
 53 10-20-2022 12:16 zipper/package/data/example.txt
--------- -------
 172 6 files

Here’s how you might access the data file, even though it lives inside a ZIP file. You
will notice the Path object has two components: the ZIP file path and the path of the
desired artifact within the ZIP archive. While it’s possible to open the file path for
writing, there is little point in doing so, as those changes will not be reflected in the
ZIP file:

>>> from importlib.resources import files, as_file
>>> import sys
>>> sys.path.insert(0, "/tmp/zipper.zip")
>>> import zipper.package
>>> path = files(zipper.package).joinpath("data/example.txt")
>>> path

Path('/tmp/zipper.zip', 'zipper/package/data/example.txt')

>>> with as_file(path) as fpath:
... with open(fpath) as f:
... print(f.name)
... print(f.read())
...

/var/folders/29/j7_gxmh13zz6b21b8fr9bd_80000gn/T/tmp5hub946rexample.txt
This is the data in zipper/package/data/example.txt.

If you check the filestore after executing this example, you will find that the tempo‐
rary file created by the call to as_file no longer exists.

The latest importlib.resources contains considerably more functionality than is
used in the simple examples we offer here, and its documentation warrants further
study. If you simply wish to gain access to files distributed with your package, these
recipes will likely suffice.

Accessing Data Included with Your Code | 33

P
ackag

ing
P

ro
g

ram
s and

E
xtensio

ns

	Chapter 24. Packaging Programs and Extensions
	What We Don’t Cover in This Chapter
	A Brief History of Python Packaging
	The Build Process
	Entry Points
	Distribution Formats

	poetry
	Preparing a Project for poetry
	Establishing and Managing Virtual Environments
	Handling Entry Points in poetry
	Building Your Project
	Installing Locally
	Distributing Your Project with poetry
	Other Commands

	setuptools
	The Source Tree and Its Root
	The setup.py Script
	The requirements.txt File
	The MANIFEST.in File

	Distributing Your Package
	Create the Distribution
	Registering and Uploading to a Repository

	zipapp: Cheap and Cheerful Distribution
	Accessing Data Included with Your Code

